Propensity Scoring matching in Cluster Randomized Trials

Zhenzhen Xu Abbott Laboratories, Chicago IL

Joint work with John D. Kalbfleisch Department of Biostatistics, University of Michigan

> BASS XIX Savannah, Georgia

Cluster randomized trials (CRTs): aims to evaluate the effects of interventions operated at the community level.

Cluster randomized trials (CRTs): aims to evaluate the effects of interventions operated at the community level.

Features of Group Randomized Trials:

- social units are selected as the units of randomization
- small sample size
- all clusters have to be available prior to study onset

Overview

- Propensity Scoring matching in Cluster Randomized Trials with Two Arms
 - Introduction and Motivating Examples
 - Propensity Score Matching
 - The BMW Design
 - Simulation study and Application
- Extension of BMW design to Clinical Trials with Three or More Arms
- Future Work

• Cluster Randomized Trial

• Overview

2. 2-ARM BMW

- Introduction
- PS
- BMW
- Matching
- Model
- Design
- Simulations
- Application
- Discussion
- 3. Extension
- 4. Future
- 5. References

2. Propensity Scoring matching in Cluster Randomized Trials with Two Arms

INSTINCT Trial: Aims to investigate the effectiveness of an education program in enhancing the tPA therapy use in stroke patients

Introduction and Motivating Examples

INSTINCT Trial: Aims to investigate the effectiveness of an education program in enhancing the tPA therapy use in stroke patients Cluster-level Confounders:

- baseline stroke volume (low vs. high) (*binary*)
- population density (urban vs. rural) (*binary*)
- percent male older than 65 (continuous)
- percent female older than 65 (continuous)

Propensity Score

Propensity Score: $\delta(x) = Pr(Z = 1 \mid X);$

- Rosenbaum and Rubin(1984) *Theorem 1*: $x \perp z \mid \delta(x)$
- Implication: adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates

Propensity Score

Propensity Score: $\delta(x) = Pr(Z = 1 \mid X);$

- Rosenbaum and Rubin(1984) *Theorem 1*: $x \perp z \mid \delta(x)$
- Implication: adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates
- In non-randomized experiments: $\delta(x)$ is unknown, sample estimate $\hat{\delta}(x)$ can produce sample balance (Rosenbaum, 2002)
- In randomized clinical trials: $\delta(x)$ is known, however, matching on $\hat{\delta}(x)$ is still possible.

The BMW Design

- Applies optimal full matching with constraints technique to estimated propensity score
- Aims to minimizes the MSE of the treatment effect estimator

Propensity Score Matching in Observational Studies

• Set up a model for the exposure or treatment variable Z to relate treatment to potential confounders X. For example:

$$\delta(x,\beta) = \Pr(Z=1 \mid X) = \exp(\beta' X) / [1 + \exp(\beta' X)]$$

• The estimated propensity score for the i^{th} subject is

 $\hat{\delta}_i(x_i, \hat{\beta})$

Similarity of covariates is measured through an estimated propensity score distance: Distance between *i* and *j*: $d_{i,j} = |\hat{\delta}_i - \hat{\delta}_j|$

Matching assembles treated and control units as similar as possible into a same strata;

The quality of a particular matching is measured by:

$$\Delta = \sum_{s=1}^{S} w(|T_s|, |C_s|) \bullet \overline{T_s \times C_s}$$

where

$$\overline{T_s \times C_s} = \sum_{(i,j) \in T_s \times C_s} |\widehat{\delta}_i - \widehat{\delta}_j| / |T_s \times C_s|$$

is the average distance between the $|T_s \times C_s|$ possible pairs in the s-th strata, and w(.,.) is a weight function.

Optimal Full Matching

• Full matching: $\min(|T_s|, |C_s|) = 1$, for s = 1, 2, ..., S.

Optimal Full Matching

- Full matching: $\min(|T_s|, |C_s|) = 1$, for s = 1, 2, ..., S.
- Rosenbaum (1991, Lemma 2) showed that if the $w(\cdot, \cdot)$ in (1) is *neutral* or *favors small subclasses*, then there is always a full matching that is optimal.

◦ neutral or favors small subclass: $w(|T_s|, |C_s|) \ge w(|T_s| - 1, |C_s| - 1) + w(1, 1)$

Optimal Full Matching

- Full matching: $\min(|T_s|, |C_s|) = 1$, for s = 1, 2, ..., S.
- Rosenbaum (1991, Lemma 2) showed that if the $w(\cdot, \cdot)$ in (1) is *neutral* or *favors small subclasses*, then there is always a full matching that is optimal.

◦ neutral or favors small subclass: $w(|T_s|, |C_s|) \ge w(|T_s| - 1, |C_s| - 1) + w(1, 1)$

• Among the class of full matchings: $w(|T_s|, |C_s|) = |T_s| + |C_s| - 1$,

$$\Delta = \sum_{s=1}^{S} \left(|T_s| + |C_s| - 1 \right) \bullet \overline{T_s \times C_s} = \sum_{s=1}^{S} \sum_{(i,j) \in T_s \times C_s} |\widehat{\delta}_i - \widehat{\delta}_j|.$$

Optimal Full Matching with constraints

• Drawback of Full Matching: very unbalanced strata \Rightarrow precision loss;

Optimal Full Matching with constraints

- Drawback of Full Matching: very unbalanced strata \Rightarrow precision loss;
- Remedy: Full Matching with Constraints k(Hansen, 2004);

Optimal Full Matching with constraints

- Drawback of Full Matching: very unbalanced strata \Rightarrow precision loss;
- Remedy: Full Matching with Constraints k(Hansen, 2004);
- Find optimal full matching with constraint k:

$$\text{Minimize } \Delta = \sum_{s=1}^{S} \sum_{(i,j) \in T_s \times C_s} |\widehat{\delta}_i - \widehat{\delta}_j|$$

over the class of full matchings subject to $k^{-1} \leq |T_s|/|C_s| \leq k$.

$$Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;$$

$$Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;$$

• Pooled Sample:
$$\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C$$

Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^r \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$
Var[$\hat{\beta}_{pool} \mid T, C, X$] = $\frac{2}{N}\sigma^2$

$$Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;$$

• Pooled Sample: $\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C$ Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^r \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$ Var[$\hat{\beta}_{pool} \mid T, C, X$] = $\frac{2}{N}\sigma^2$

• Matched Sample: $\hat{\beta}_{strata} = \sum_{s=1}^{S} w_s \hat{\beta}_{strata,s} = \sum_{s=1}^{S} w_s (\bar{y}_{T_s} - \bar{y}_{C_s})$ Bias $[\hat{\beta}_{strata} \mid T, C, X] = \sum_{s=1}^{S} w_s (\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT_s} - \bar{X}_{jC_s}))$ Var $[\hat{\beta}_{strata} \mid T, C, X] = \sum_{s=1}^{S} w_s^2 (\frac{1}{|T_s|} + \frac{1}{|C_s|})\sigma^2$

$$Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;$$

• Pooled Sample: $\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C$ Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^r \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$ Var[$\hat{\beta}_{pool} \mid T, C, X$] = $\frac{2}{N}\sigma^2$

• Matched Sample: $\hat{\beta}_{strata} = \sum_{s=1}^{S} w_s \hat{\beta}_{strata,s} = \sum_{s=1}^{S} w_s (\bar{y}_{T_s} - \bar{y}_{C_s})$ Bias $[\hat{\beta}_{strata} \mid T, C, X] = \sum_{s=1}^{S} w_s (\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT_s} - \bar{X}_{jC_s}))$ Var $[\hat{\beta}_{strata} \mid T, C, X] = \sum_{s=1}^{S} w_s^2 (\frac{1}{|T_s|} + \frac{1}{|C_s|})\sigma^2$

The BMW Design

• Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C;

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance Δ_k .

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance Δ_k .
- Step 4. Repeat Step 1 to 3 M times; pick the randomized sample with minimum total distance $\Delta_k^* = \min(\Delta_{1k}, \Delta_{2k}, ..., \Delta_{Mk})$.

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance Δ_k .
- Step 4. Repeat Step 1 to 3 M times; pick the randomized sample with minimum total distance $\Delta_k^* = \min(\Delta_{1k}, \Delta_{2k}, ..., \Delta_{Mk})$.

The BMW Design (cont'd): choices of $k \text{ and } {\cal M}$

• Choice of
$$k \ (k = 1, 2, ..., \frac{N}{2} - 1)$$
:

The BMW Design (cont'd): choices of k and ${\cal M}$

• Choice of
$$k \ (k = 1, 2, ..., \frac{N}{2} - 1)$$
:

 $\circ~$ If γ is known and M is fixed,

Step 5. Compute MSE based on the randomization with Δ_k^* , then repeat step 1 to 4 for all choices of k to find the optimal k^* s.t. $MSE_{k^*} = \min(MSE_1^*, MSE_2^*, ..., MSE_{\frac{N}{2}-1}^*).$

The BMW Design (cont'd): choices of $k \mbox{ and } M$

• Choice of
$$k \ (k = 1, 2, ..., \frac{N}{2} - 1)$$
:

 $\circ~$ If γ is known and M is fixed,

Step 5. Compute MSE based on the randomization with Δ_k^* , then repeat step 1 to 4 for all choices of k to find the optimal k^* s.t. $MSE_{k^*} = \min(MSE_1^*, MSE_2^*, ..., MSE_{\frac{N}{2}-1}^*).$

 $\circ~$ If γ is unknown,

Simulation study suggests that k = 2 is a suitable choice under most of the confounding scenarios;

• Choice of $M: M \in [10, 20]$ suggested by simulation study;

Alternative Approaches I

One possible model-based approach suggested by an AE:

$$Y_i = \alpha + \beta I(i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.$$

Alternative Approaches I

One possible model-based approach suggested by an AE:

$$Y_i = \alpha + \beta I(i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.$$

• if the propensity score model is *appropriately* specified:

- $\circ \text{ True model: } Y_i = \alpha + \beta I(i \in T) + \gamma_1 X_i + \gamma_2 X_i^2 + \varepsilon_i$
- $\circ \ \text{Specified Model:} \\ \text{logit}(\delta_i) = \text{logit}(Pr(Z=1 \mid X_i; \alpha)) = \alpha_1 + \alpha_2 X_i + \alpha_3 X_i^2 \text{,} \\$

Alternative Approaches I

One possible model-based approach suggested by an AE:

$$Y_i = \alpha + \beta I(i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.$$

- if the propensity score model is *appropriately* specified:
 - $\circ \text{ True model: } Y_i = \alpha + \beta I(i \in T) + \gamma_1 X_i + \gamma_2 X_i^2 + \varepsilon_i$
 - Specified Model: $\log_i(\delta_i) = \log_i(Pr(Z = 1 \mid X_i; \alpha)) = \alpha_1 + \alpha_2 X_i + \alpha_3 X_i^2,$
- if the propensity score model is *inappropriately* specified:

 $\circ \operatorname{logit}(\delta_i) = \operatorname{logit}(Pr(Z = 1 \mid X_i; \alpha)) = \alpha_1 + \alpha_2 X_i.$

Alternative Approaches II

Robins-Mark-Newey (1992) consistent E-estimator β_E :

$$\widetilde{\beta_E} = \sum_{i=1}^n Y_i(Z_i - \widehat{\delta}_i) / \sum_{i=1}^n Z_i(Z_i - \widehat{\delta}_i).$$

 $\widetilde{\beta_E}$ is consistent when the model for propensity score $\widehat{\delta_i}$ is *correctly* specified. The E-estimation procedure is designed for the observational studies.

Alternative Approaches II

Robins-Mark-Newey (1992) consistent E-estimator β_E :

$$\widetilde{\beta_E} = \sum_{i=1}^n Y_i(Z_i - \widehat{\delta}_i) / \sum_{i=1}^n Z_i(Z_i - \widehat{\delta}_i).$$

 $\hat{\beta}_E$ is consistent when the model for propensity score $\hat{\delta}_i$ is *correctly* specified. The E-estimation procedure is designed for the observational studies.

• Our simulation study suggests that the BMW approach is more efficient and robust than the E-estimator.

Greevy et al.(2004) suggest multivariate matching design based on Mahalanobis distance:

- Form optimal nonbipartite matching on the multivariate Mahalanobis distance;
- Randomly assign treatments within each pair;

Greevy et al.(2004) suggest multivariate matching design based on Mahalanobis distance:

- Form optimal nonbipartite matching on the multivariate Mahalanobis distance;
- Randomly assign treatments within each pair;
- As the confounding effects increase or the number of covariates increase, the BMW design becomes much more effective than Greevy's design in reducing MSE.

Simulation Study

- generating response: $Y_i = \beta Z_i + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i$
- true treatment effect: $\beta = 0.7$
- true confounding effects: $\gamma_j = \gamma, \ j = 1, ..., r$ where $\gamma = 0.5, \ 1.0, \ 1.5, \ 2.0$
- covariate setting:

•
$$X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim}$$
Bernoulli (0.5) ;
• $X_1, X_2 \stackrel{i.i.d}{\sim}$ Bernoulli (0.5) ; $X_3, X_4 \stackrel{i.i.d}{\sim} N(0, 0.25)$;
• $X_1, X_2 \stackrel{i.i.d}{\sim}$ Bernoulli (0.5) ; $X_3, X_4 \stackrel{i.i.d}{\sim}$ Bernoulli (0.66) .
• $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8 \stackrel{i.i.d}{\sim}$ Bernoulli (0.5)

Simulation Study: Competing Designs

The BMW design versus:

- Completely Randomized Design;
- Matched-Pair Design;
- Model-based Approach;
- Robins-Mark-Newey's E-estimator β_E ;
- Greevy et al. multivariate matching design on Mahalanobis distance;

Covariate Setting: $X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$

γ_j	M	(BMV	7 vs. CR	Design)	(BMW	$^{\prime}$ vs. MP	Design)
		k = 1	k = 2	k = 3	k = 1	k = 2	k = 3
	5	12.2	10.3	6.8	7.9	5.9	2.3
(0.5, 0.5, 0.5, 0.5)	10	14.4	11.7	7.1	10.2	7.5	2.6
	20	17.4	13.5	8.8	13.4	9.3	4.4
					l		
	5	35.6	43.5	39.6	24.5	33.9	29.3
(1.0, 1.0, 1.0, 1.0)	10	40.3	44.4	41.7	30.1	34.9	31.7
	20	50.3	48.6	46.2	41.8	39.8	36.9
		I			I		
	5	54.5	72.2	69.0	39.8	63.2	59.0
(2.0, 2.0, 2.0, 2.0)	10	61.4	73.7	70.3	49.0	65.3	60.8
, ,	20	68.5	74.1	71.4	58.5	65.7	62.3
		I					

Covariate Setting: $X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$

γ_j	M	(BMV	V vs. CR	Design)	(BMW	$^{\prime}$ vs. MP	Design)
		k = 1	k = 2	k = 3	k = 1	k = 2	k = 3
	5	12.2	10.3	6.8	7.9	5.9	2.3
(0.5, 0.5, 0.5, 0.5)	10	14.4	11.7	7.1	10.2	7.5	2.6
	20	17.4	13.5	8.8	13.4	9.3	4.4
	5	35.6	43.5	39.6	24.5	33.9	29.3
(1.0, 1.0, 1.0, 1.0)	10	40.3	44.4	41.7	30.1	34.9	31.7
	20	50.3	48.6	46.2	41.8	39.8	36.9
		I			1		
	5	54.5	72.2	69.0	39.8	63.2	59.0
(2.0, 2.0, 2.0, 2.0)	10	61.4	73.7	70.3	49.0	65.3	60.8
	20	68.5	74.1	71.4	58.5	65.7	62.3
		I					

• Confounding Effects γ ;

Covariate Setting: $X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$

γ_j	M	(BMV	V vs. CR	Design)	(BMW	$^{\prime}$ vs. MP	Design)
		k = 1	k = 2	k = 3	k = 1	k = 2	k = 3
	5	12.2	10.3	6.8	7.9	5.9	2.3
(0.5, 0.5, 0.5, 0.5)	10	14.4	11.7	7.1	10.2	7.5	2.6
	20	17.4	13.5	8.8	13.4	9.3	4.4
	5	35.6	43.5	39.6	24.5	33.9	29.3
(1.0, 1.0, 1.0, 1.0)	10	40.3	44.4	41.7	30.1	34.9	31.7
	20	50.3	48.6	46.2	41.8	39.8	36.9
	5	54.5	72.2	69.0	39.8	63.2	59.0
(2.0, 2.0, 2.0, 2.0)	10	61.4	73.7	70.3	49.0	65.3	60.8
	20	68.5	74.1	71.4	58.5	65.7	62.3

• Confounding Effects γ ;• Constraint k: k = 2;

Covariate Setting: $X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$

γ_j	M	(BMV	V vs. CR	Design)	(BMW	$^{\prime}$ vs. MP	Design)
		k = 1	k = 2	k = 3	k = 1	k = 2	k = 3
	5	12.2	10.3	6.8	7.9	5.9	2.3
(0.5, 0.5, 0.5, 0.5)	10	14.4	11.7	7.1	10.2	7.5	2.6
	20	17.4	13.5	8.8	13.4	9.3	4.4
	5	35.6	43.5	39.6	24.5	33.9	29.3
(1.0, 1.0, 1.0, 1.0)	10	40.3	44.4	41.7	30.1	34.9	31.7
	20	50.3	48.6	46.2	41.8	39.8	36.9
		1			1		
	5	54.5	72.2	69.0	39.8	63.2	59.0
(2.0, 2.0, 2.0, 2.0)	10	61.4	73.7	70.3	49.0	65.3	60.8
	20	68.5	74.1	71.4	58.5	65.7	62.3

• Confounding Effects γ ;• Constraint k: k = 2;• Replication M: M = 10:

• Effects of Covariate Settings:

	7.4			<u> </u>			<u> </u>
${\gamma}_j$	M		W vs. CR			W vs. MP	<u> </u>
		k = 1	k = 2	k = 3	k = 1	k = 2	k = 3
	7	$X_1 = X_2 = X$	$\mathbf{x} = \mathbf{x} \mathbf{x} \mathbf{x}^{i.i.}$	^d Bernov	11i(0.5)		
	2	$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$	$3, \mathbf{A}_4$	Dernot			
	5	35.6	43.5	39.6	24.5	33.9	29.3
(1 0 1 0 1 0 1 0)	10	40.3	44.4	41.7	30.1	34.9	31.7
(1.0,1.0,1.0,1.0)							
	20	50.3	48.6	46.2	41.8	39.8	36.9
		,			7		
X_1, X	$\frac{1}{2} \stackrel{i.i.a}{\sim}$	$^{l}\;Bernou$	lli(0.5); I	$X_3, X_4 \stackrel{i.i}{\sim}$	$\mathcal{F}^{d} \; Berno$	ulli(0.66)	
± /	-			0, 1			
	5	32.2	40.7	36.7	20.9	30.9	26.2
(1.0,1.0,1.0,1.0)	10	37.9	43.1	39.3	27.6	33.7	29.3
(,,,	20	41.8	44.1	41.2	32.2	34.8	31.4
						••	• • • •
	i	.i.d _		、	i.i.d	>	
X_1	$, X_{2}$	\sim Berr	noulli(0.5)	$; X_3, X_4$	$\sim N(0)$	0, 0.25)	
	5	24.3	30.7	27.2	13.2	20.5	16.5
(1.0,1.0,1.0,1.0)	10	28.8	32.4	29.1	18.3	22.4	18.7
	20	32.8	33.0	30.1	22.9	23.2	19.8
		-			-		
V.	Y ₂ Y		$-\mathbf{x}_{\mathbf{z}}$	$_7, X_8 \overset{i.i.o}{\sim}$	Barnou	$U_{i}(0.5)$	
$\mathbf{\Lambda}_{1}$	$, \mathbf{x}_2, \mathbf{z}_3$	$13, \mathbf{\Lambda}_4, \mathbf{\Lambda}$	$5, \Lambda_6, \Lambda_7$	$(, \Lambda_8 \sim$	Dernou	(0.0)	
	5	28.7	52.4	52.2	23.3	48.8	48.6
(10101010							
(1.0,1.0,1.0,1.0,	10	35.8	56.1	53.1	30.9	52.8	49.5
1.0,1.0,1.0,1.0)	20	43.2	57.6	54.2	38.9	54.4	50.7

• BMW vs. model-based approach:

		MSE	MSE Percent Reduction(%)
γ	M	(MB)	(BMW vs. $MB)$
			$k = 1 \qquad k = 2 \qquad k = 3$

where propensity score *inappropriately* specified (17) (18)

$$X \stackrel{i.i.d}{\sim} Normal(0, 0.25)$$

(0.5, 0.5)	10	0.185	0.65	14.75	12.25
(1.0, 1.0)	10	0.365	-0.15	30.03	32.31
(1.5, 1.5)	10	0.665	5.80	41.88	46.12

where propensity score *appropriately* specified (15) (16)

 $X_1, X_2, X_3, X_4 \overset{i.i.d}{\sim} Bernoulli(0.5)$

(0.5,0.5,0.5,0.5)	10	0.165	15.01	15.74	6.79
(1.0,1.0,1.0,1.0)	10	0.166	-0.87	6.02	1.44
(1.5,1.5,1.5,1.5)	10	0.166	-29.84	-2.49	-11.31

• BMW vs. Robins-Mark-Newey E-estimator:

		MSE	MSE Percent Reduction(%)
γ	M	(E - est)	(BMW vs. $E-est$)
			$k = 1 \qquad k = 2 \qquad k = 3$

where propensity score *inappropriately* specified (17) (18)

$$X \stackrel{i.i.d}{\sim} Normal(0, 0.25)$$

(0.5, 0.5)	10	0.334	45.06	52.85	51.47
(1.0, 1.0)	10	0.964	62.10	73.52	74.39
(1.5, 1.5)	10	2.013	68.90	80.81	82.21

where propensity score *appropriately* specified (15) (16)

 $X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$

(0.5,0.5,0.5,0.5)	10	0.211	33.41	33.98	26.97
(1.0,1.0,1.0,1.0)	10	0.528	68.38	70.54	69.10
(1.5,1.5,1.5,1.5)	10	0.971	77.85	82.52	81.01

• BMW vs. multivariate non-bipartite matching design:

			MSE	MSE f	Percent Rec	duction($\%$
γ	$\sum_{j=1}^{8} \gamma_j$	M	(NB Design)	(BM)	W vs. NB	Design)
	<i>j</i> =1			k = 1	k = 2	k = 3
	$X_1 X$		$X_4 \stackrel{i.i.d}{\sim} Berno$	aulli(0.5)		
	Λ_1, Λ	2, A3,	$X_4 \sim Derma$	<i>auu</i> (0.0)		
		5		2.42	14.49	8.53
(1.0,1.0,1.0,1.0)	4	10	0.185	9.62	15.79	11.68
		20		24.78	22.18	18.44
$X_1 X_1$	$x_2 X_2 X_3$		$X_6, X_7, X_8 \stackrel{i.i.}{\sim}$	\mathcal{L}^{d} Berno	ulli(0.5)	
· · · · · · · · · · · · · · · · · · ·	-2,213,21	4,210,	10,11,10	Derno		
		5		-25.19	16.39	16.07
(1.0,1.0,1.0,1.0,	8	10	0.222	-12.76	22.92	17.65
1.0,1.0,1.0,1.0)		20		0.26	25.53	19.59

Application to Instinct Trial

- Cluster-level confounders:
 - Stroke Volume;
 - Population Density;
 - Percent male greater than 65;
 - Percent Female greater than 65;

Application to Instinct Trial

- Cluster-level confounders:
 - Stroke Volume;
 - Population Density;
 - Percent male greater than 65;
 - Percent Female greater than 65;
- Matched-Pair Design: Optimally Matched on Stroke Volume and Population Density;

Application to Instinct Trial

- Cluster-level confounders:
 - Stroke Volume;
 - Population Density;
 - Percent male greater than 65;
 - Percent Female greater than 65;
- Matched-Pair Design: Optimally Matched on Stroke Volume and Population Density;
- BMW Design:

 \circ When $\gamma'_j s$ are unknown: k=2; M=10;

Application to Instinct Trial: BMW results

	$Treatment\ Group$					Control Group					
Strata	$ID(\widehat{\delta})$	X_1	X_2	X_3	X_4	$ID(\widehat{\delta})$	X_1	X_2	X_3	X_4	
1	1 (0.33)	0.15	0.13	0	0	6 (0.35)	0.19	0.07	0	0	
2	2 (0.38)	0.17	0.11	1	0	8 (0.35)	0.22	0.14	0	0	
	11 (0.40)	0.22	0.14	1	0						
3	3 (0.63)	0.13	0.06	1	1	9 (0.63)	0.14	0.06	1	1	
						19 (0.67)	0.25	0.15	1	1	
4	4 (0.58)	0.12	0.06	0	1	12 (0.60)	0.07	0.06	1	1	
5	14 (0.32)	0.13	0.07	0	0	13 (0.32)	0.13	0.09	0	0	
	15 (0.31)	0.10	0.06	0	0						
6	17 (0.41)	0.24	0.12	1	0	10 (0.41)	0.26	0.18	1	0	
	22 (0.43)	0.30	0.17	1	0						
7	20 (0.60)	0.08	0.06	1	1	16 (0.61)	0.10	0.07	1	1	
						18 (0.61)	0.09	0.05	1	1	
8	21 (0.60)	0.18	0.14	0	1	5 (0.61)	0.19	0.13	0	1	
9	24 (0.62)	0.23	0.16	0	1	7 (0.62)	0.24	0.19	0	1	
	, ,					23 (0.62)	0.11	0.07	1	1	

Discussion

- BMW design reduces the chance imbalance on observed covariates and retains random assignment to balance on average over unobserved;
- The design is flexible to choose other criteria besides MSE to trade-off bias and variance;
- Carefully chosen M:
 - $\,\circ\,\,$ The larger M is, the better balance BMW can attain; M=100 and k=1 is recommended;
 - If M is too large (M close to $\binom{N}{\frac{N}{2}}$), e.g. $M = \infty$ and k = 1, the BMW design always lead to the same set of matched pair with same treatment assignment for continuous covariates;
- Advantages of BMW design over model based covariate adjustment approach:
 - Simple;
 - Performs well for small studies: does not require a valid model of the covariate effects.

Two major areas of Generalization:

- Cluster Randomized Trials with more than two arms;
- Clinical Trials with Staggered Entry Adaptive Randomization Design;

- Cluster Randomized Trial
- Overview
- 2. 2-ARM BMW
- 3. Extension
- Matching
- Ad Hoc Methods
- Model
- BMW Design
- Simulations
- True Optimum
- Discussion
- 4. Future
- 5. References

3. Extension to CRT with Three or More Arms

• For three groups:

$$\mathcal{A} = \{\eta_1^A, ..., \eta_{N/3}^A\}, \mathcal{B} = \{\eta_1^B, ..., \eta_{N/3}^B\}, \mathcal{C} = \{\eta_1^C, ..., \eta_{N/3}^C\}:$$

- For three groups: $\mathcal{A} = \{\eta_1^A, ..., \eta_{N/3}^A\}, \mathcal{B} = \{\eta_1^B, ..., \eta_{N/3}^B\}, \mathcal{C} = \{\eta_1^C, ..., \eta_{N/3}^C\}:$
- Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t \mid \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\} / \{1 + \exp\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\} + \exp\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}\}$

where t = 1, 2, 3 with $\alpha_3 = 0$.

• For three groups:

$$\mathcal{A} = \{\eta_1^A, ..., \eta_{N/3}^A\}, \mathcal{B} = \{\eta_1^B, ..., \eta_{N/3}^B\}, \mathcal{C} = \{\eta_1^C, ..., \eta_{N/3}^C\}:$$

• Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t \mid \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\} / \{1 + \exp\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\} + \exp\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}\}$

where t = 1, 2, 3 with $\alpha_3 = 0$.

• The estimated propensity score for the i^{th} subject is

 $(\hat{\delta}_{1,i},\hat{\delta}_{2,i},\hat{\delta}_{3,i})$

• For three groups:

$$\mathcal{A} = \{\eta_1^A, ..., \eta_{N/3}^A\}, \mathcal{B} = \{\eta_1^B, ..., \eta_{N/3}^B\}, \mathcal{C} = \{\eta_1^C, ..., \eta_{N/3}^C\}:$$

• Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t \mid \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\} / \{1 + \exp\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\} + \exp\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}\}$

where t = 1, 2, 3 with $\alpha_3 = 0$.

• The estimated propensity score for the i^{th} subject is

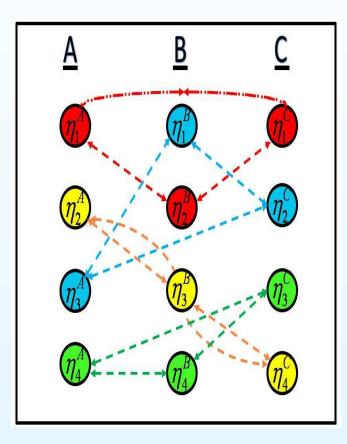
 $(\hat{\delta}_{1,i},\hat{\delta}_{2,i},\hat{\delta}_{3,i})$

• similarity of covariates is measured through an estimated Euclidean distance:

$$\delta\{(\eta_i^A, \eta_j^B)\} = \sqrt{(\hat{\delta}_{1,i}^A - \hat{\delta}_{1,j}^B)^2 + (\hat{\delta}_{2,i}^A - \hat{\delta}_{2,j}^B)^2 + (\hat{\delta}_{3,i}^A - \hat{\delta}_{3,j}^B)^2}$$

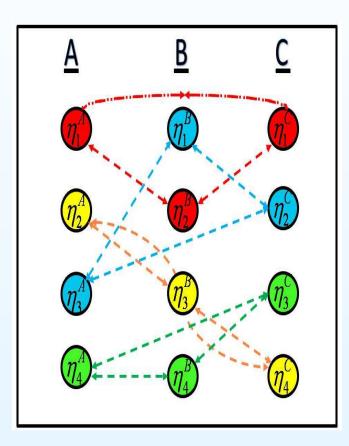
How to optimally match on three groups?

How to optimally match on three groups?



• Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

How to optimally match on three groups?

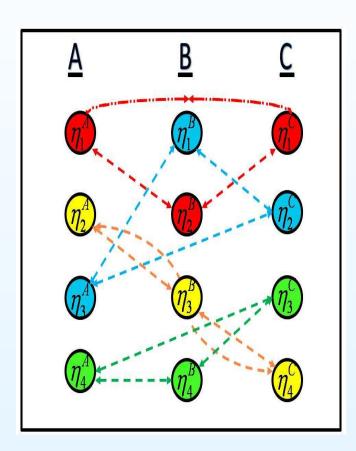


• The Optimal tripartite matching problem: NP complete problem;

• Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

How to optimally match on three groups?

- The Optimal tripartite matching problem: NP complete problem;
- Given group Size m, number of comparisons = $(m!)^2$;
 - Group Size m = 3, number of comparisons = 36;
 - Group Size m = 4, number of comparisons = 576;
 - Group Size m = 5, number of comparisons = 14400;
 - Group Size m = 6, number of comparisons = 518400;
 - Group Size m = 10, number of comparisons = $1.316819e^{13}$;



How to optimally match on three groups?

- The Optimal tripartite matching problem: NP complete problem;
- Given group Size m, number of comparisons = $(m!)^2$;
 - Group Size m = 3, number of comparisons = 36;
 - Group Size m = 4, number of comparisons = 576;
 - Group Size m = 5, number of comparisons = 14400;
 - Group Size m = 6, number of comparisons = 518400;
 - Group Size m = 10, number of comparisons = $1.316819e^{13}$;
- Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

Bo and Rosenbaum (2004): P is an optimal non-bipartite matching with $\Delta(P)<+\infty$ if and only if P is also an optimal, feasible tripartite matching.

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

Bo and Rosenbaum (2004): P is an optimal non-bipartite matching with $\Delta(P) < +\infty$ if and only if P is also an optimal, feasible tripartite matching.

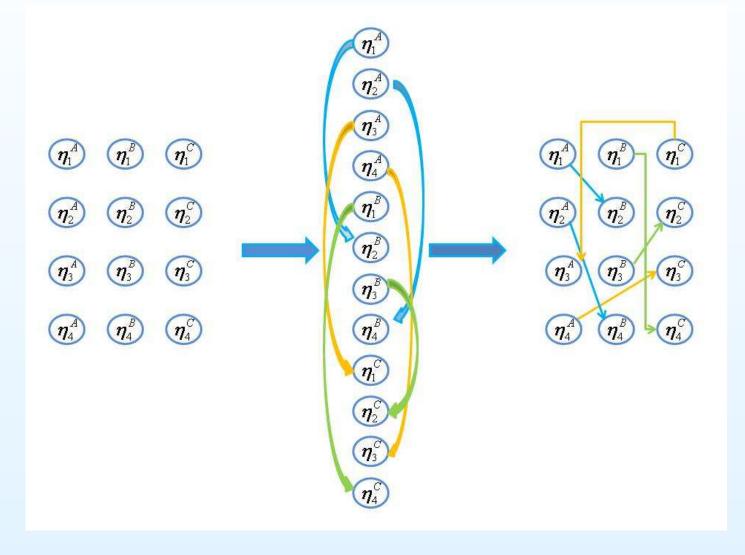
• Given a single set $\Theta = \mathcal{A} \bigcup \mathcal{B} \bigcup \mathcal{C} = (\eta_1^A, ..., \eta_{N/3}^A, \eta_1^B, ..., \eta_{N/3}^B, \eta_1^C, ... \eta_{N/3}^C);$

$$\delta\{(\eta_i^m, \eta_j^n)\} = \begin{cases} \sqrt{(\hat{\delta}_{1,i}^m - \hat{\delta}_{1,j}^n)^2 + (\hat{\delta}_{2,i}^m - \hat{\delta}_{2,j}^n)^2 + (\hat{\delta}_{3,i}^m - \hat{\delta}_{3,j}^n)^2} & \text{if } m \neq n; \\ +\infty & \text{if } m = n. \end{cases}$$

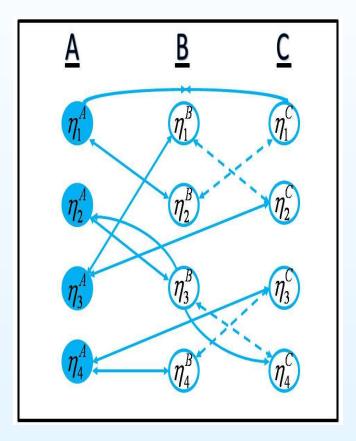
• Find the optimal non-bipartite matching;

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

How to obtain incomplete block of disjoint pairs through optimal nonbipartite matching?

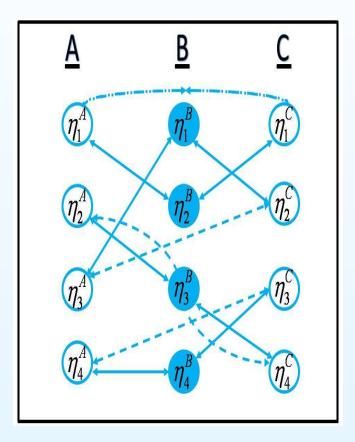


Ad Hoc Method (II). Symmetric Tripartite Matching With Triples



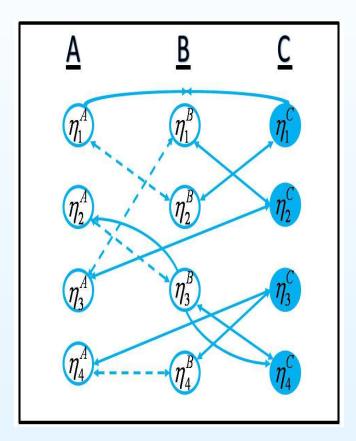
- $\Delta^*_{\mathcal{M}_{\mathcal{A}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},C}} + \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{B},C}} \delta(\omega)$
- $\Delta^*_{\mathcal{M}_{\mathcal{B}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \Delta^*_{\mathcal{M}_{\mathcal{B},\mathcal{C}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{A},\mathcal{C}}} \delta(\omega)$
- $\Delta_{\mathcal{M}_{\mathcal{C}}}^{*} = \Delta_{\mathcal{M}_{\mathcal{B},\mathcal{C}}}^{*} + \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{C}}}^{*} + \sum_{\omega \in \mathcal{M}_{\mathcal{A},\mathcal{B}}^{+}} \delta(\omega)$
- optimal reference group: $\Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B},\mathcal{C}}} = \min(\Delta^*_{\mathcal{M}_{\mathcal{A}}}, \Delta^*_{\mathcal{M}_{\mathcal{B}}}, \Delta^*_{\mathcal{M}_{\mathcal{C}}})$

Ad Hoc Method (II). Symmetric Tripartite Matching With Triples



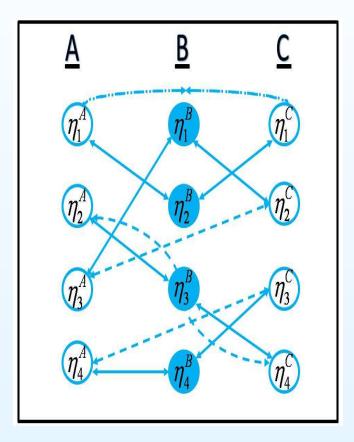
- $\Delta^*_{\mathcal{M}_{\mathcal{A}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{C}}} + \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{B},\mathcal{C}}} \delta(\omega)$
- $\Delta^*_{\mathcal{M}_{\mathcal{B}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \Delta^*_{\mathcal{M}_{\mathcal{B},\mathcal{C}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{A},\mathcal{C}}} \delta(\omega)$
- $\Delta^*_{\mathcal{M}_{\mathcal{C}}} = \Delta^*_{\mathcal{M}_{\mathcal{B},\mathcal{C}}} + \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{C}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{A},\mathcal{B}}} \delta(\omega)$
- optimal reference group: $\Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B},\mathcal{C}}} = \min(\Delta^*_{\mathcal{M}_{\mathcal{A}}}, \Delta^*_{\mathcal{M}_{\mathcal{B}}}, \Delta^*_{\mathcal{M}_{\mathcal{C}}})$

Ad Hoc Method (II). Symmetric Tripartite Matching With Triples



- $\Delta^*_{\mathcal{M}_{\mathcal{A}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{C}}} + \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{B},\mathcal{C}}} \delta(\omega)$
- $\Delta^*_{\mathcal{M}_{\mathcal{B}}} = \Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \Delta^*_{\mathcal{M}_{\mathcal{B},\mathcal{C}}} + \sum_{\omega \in \mathcal{M}^+_{\mathcal{A},\mathcal{C}}} \delta(\omega)$
- $\Delta_{\mathcal{M}_{\mathcal{C}}}^{*} = \Delta_{\mathcal{M}_{\mathcal{B},\mathcal{C}}}^{*} + \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{C}}}^{*} + \sum_{\omega \in \mathcal{M}_{\mathcal{A},\mathcal{B}}^{+}}^{*} \delta(\omega)$
- optimal reference group: $\Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B},\mathcal{C}}} = \min(\Delta^*_{\mathcal{M}_{\mathcal{A}}}, \Delta^*_{\mathcal{M}_{\mathcal{B}}}, \Delta^*_{\mathcal{M}_{\mathcal{C}}})$

Ad Hoc Method (III). Asymmetric Tripartite Matching With Triples



- With group *B* as predefined reference group:
- $\Delta_{\mathcal{B}}^* = \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{B}}}^* + \Delta_{\mathcal{M}_{\mathcal{B},\mathcal{C}}}^*$
- $\sum_{\omega \in \mathcal{M}^+_{\mathcal{A},\mathcal{C}}} \delta(\omega)$ is not taken into account;

Model:
$$Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i$$

Model:
$$Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i$$

• Pooled Samples:

$$\widehat{\beta}_{1,pool} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}};$$

$$MSE(\widehat{\beta}_{1,pool}) = \frac{6}{N}\gamma^T \Sigma \gamma + \frac{6}{N}\sigma^2$$

Model:
$$Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i$$

• Pooled Samples:

$$\widehat{\beta}_{1,pool} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}};$$

$$MSE(\hat{\beta}_{1,pool}) = \frac{6}{N}\gamma^T \Sigma \gamma + \frac{6}{N}\sigma^2$$

• Matched Samples (ICB Design):

$$\hat{\beta}_{1}^{ICB} = \frac{2}{3}(\overline{y}_{A13} - \overline{y}_{C13}) + \frac{1}{3}[(\overline{y}_{A12} - \overline{y}_{B12}) + (\overline{y}_{B23} - \overline{y}_{C23})]$$

 $MSE(\widehat{\beta}_{1}^{ICB}) = \frac{1}{9}\gamma^{T}\operatorname{Cov}^{*}[2(\overline{\mathbf{X}}_{A13} - \overline{\mathbf{X}}_{C13}) + (\overline{\mathbf{X}}_{A12} - \overline{\mathbf{X}}_{B12}) + (\overline{\mathbf{X}}_{B23} - \overline{\mathbf{X}}_{C23})]\gamma + 8\sigma^{2}/N$

Model:
$$Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i$$

• Pooled Samples:

$$\widehat{\beta}_{1,pool} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}};$$

$$MSE(\hat{\beta}_{1,pool}) = \frac{6}{N}\gamma^T \Sigma \gamma + \frac{6}{N}\sigma^2$$

• Matched Samples (ICB Design):

$$\hat{\beta}_{1}^{ICB} = \frac{2}{3}(\overline{y}_{A13} - \overline{y}_{C13}) + \frac{1}{3}[(\overline{y}_{A12} - \overline{y}_{B12}) + (\overline{y}_{B23} - \overline{y}_{C23})]$$

$$MSE(\widehat{\beta}_{1}^{ICB}) = \frac{1}{9}\gamma^{T}\operatorname{Cov}^{*}[2(\overline{\mathbf{X}}_{A13} - \overline{\mathbf{X}}_{C13}) + (\overline{\mathbf{X}}_{A12} - \overline{\mathbf{X}}_{B12}) + (\overline{\mathbf{X}}_{B23} - \overline{\mathbf{X}}_{C23})]\gamma + 8\sigma^{2}/N$$

• Matched Samples (ATM and STM Design):

$$\widehat{\beta}_1^{ATM} = \widehat{\beta}_1^{STM} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}}$$

$$MSE(\widehat{\beta}_1^{STM}) = \gamma^T \text{Cov}^{**}(\overline{\mathbf{X}}_{\mathcal{A}} - \overline{\mathbf{X}}_{\mathcal{C}})\gamma + 6\sigma^2/N.$$

The design for three-arms trials with specified parameter M:

The design for three-arms trials with specified parameter M:

• Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A}, \mathcal{B} and \mathcal{C} , respectively;

The design for three-arms trials with specified parameter M:

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A}, \mathcal{B} and \mathcal{C} , respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N| \times |N|$ matrix of estimated Euclidean distances;

The design for three-arms trials with specified parameter M:

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A}, \mathcal{B} and \mathcal{C} , respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N| \times |N|$ matrix of estimated Euclidean distances;
- Step 3. Obtain the optimal matched samples based on a matching algorithm:
 - incomplete block design with disjoint pairs;
 - asymmetric tripartite matching design;
 - symmetric tripartite matching design.

Record the minimum total distance Δ for the given randomization.

The design for three-arms trials with specified parameter M:

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A}, \mathcal{B} and \mathcal{C} , respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N| \times |N|$ matrix of estimated Euclidean distances;
- Step 3. Obtain the optimal matched samples based on a matching algorithm:
 - incomplete block design with disjoint pairs;
 - asymmetric tripartite matching design;
 - symmetric tripartite matching design.

Record the minimum total distance Δ for the given randomization.

• Step 4. Repeat Steps 1 to 3 for M times and choose the randomization with minimum total distance $\Delta^* = \min(\Delta_1, \Delta_2, ..., \Delta_M)$.

Simulation Study

- generating response: $Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i, \quad i = 1, 2, ...N$
- true treatment effect: $\beta_1 = \beta_2 = 0.5$
- true confounding effects: $\gamma_j = \gamma, \ j = 1, ..., r$, where $\gamma = 0.5, 1.0, 1.5$
- covariate setting:

•
$$X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} \operatorname{Bernoulli}(0.5);$$

• $X_1, X_2 \stackrel{i.i.d}{\sim} \operatorname{Bernoulli}(0.5); X_3, X_4 \stackrel{i.i.d}{\sim} N(0, 0.25);$

• We consider sample sizes N = 24 or 36;

The BMW Design with Three Arms: Simulation Results ${\cal N}=24$

		MSE	MSE Percent Reduction(%)			
γ	M	(CR)	(ICB vs. CR Design)	(STM vs. CR Design)	(ATM vs. CR Design)	
			$\hat{\beta}_1 = \hat{\beta}_{AC}$	$\hat{\beta}_1 = \hat{\beta}_{AC}$	\hat{eta}_1 or \hat{eta}_2	$\hat{\beta}_{AB} = \hat{\beta}_1 - \hat{\beta}_2$
$X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} Bernoulli(0.5)$						
0.5	100	0.312	-11.95	15.52	15.23	15.42
1.0	100	0.487	18.05	37.02	38.18	34.58
1.5	100	0.806	40.20	53.61	55.56	47.96
$X_1, X_2 \stackrel{i.i.d}{\sim} Bernoulli(0.5); X_3, X_4 \stackrel{i.i.d}{\sim} N(0, 0.25)$						
0.5	100	0.288	-19.11	10.12	10.36	9.14
1.0	100	0.403	7.11	28.74	29.38	27.28
1.5	100	0.600	29.24	44.37	45.44	42.23

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18$$

where $X_i \overset{i.i.d}{\sim} \mathcal{N}(0, 0.25)$ and $\varepsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0, 1)$ and $N = 3 \times 6 = 18$

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18$$

where $X_i \overset{i.i.d}{\sim} \mathcal{N}(0, 0.25)$ and $\varepsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0, 1)$ and $N = 3 \times 6 = 18$

• Algorithm: Dynamic programming algorithm;

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18$$

where $X_i \overset{i.i.d}{\sim} \mathcal{N}(0, 0.25)$ and $\varepsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0, 1)$ and $N = 3 \times 6 = 18$

- Algorithm: Dynamic programming algorithm;
- **Results**: The symmetric tripartite matching algorithm is nearly optimal:

MSE of treatment effect estimator;

[•] Difference in minimum Euclidean Distances;

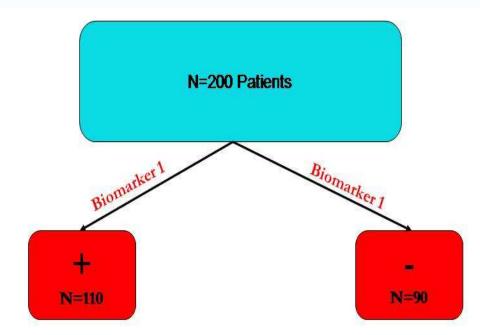
Discussion

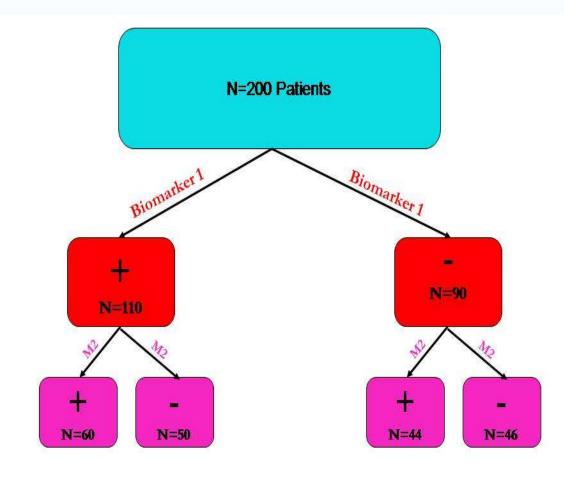
- The 3-arms BMW design can be further extended to be used in 4-arms or larger trials, e.g. 2x2 factorial design;
 - \circ The symmetric quadripartite matching; $\sqrt{}$
 - \circ The asymmetric quadripartite matching; \checkmark
 - Method of finding Optimal balanced incomplete block design through nonbipartite matching; ×
- Limitation: The BMW design may not perform well in the studies with very small sample size (e.g. group size < 10 and number of covariates ≥ 4);
 - The propensity score model may not work well due to the complete separation of cases and controls by covariates;
 - One might drop less important covariates;

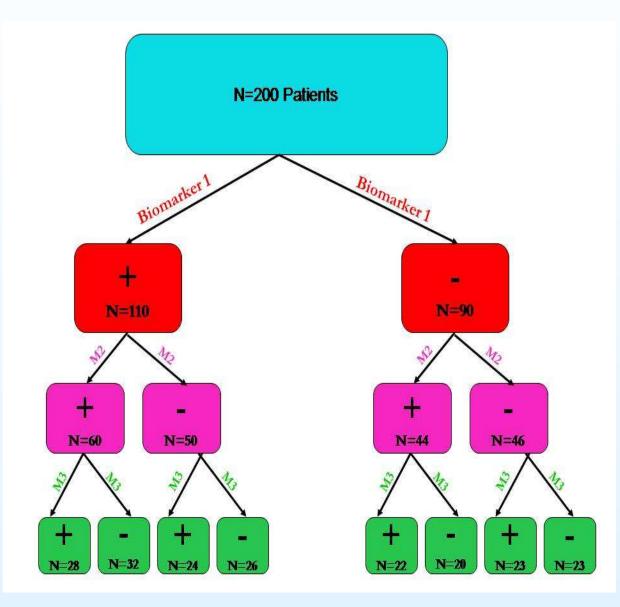
- Cluster Randomized Trial
- Overview
- 2. 2-ARM BMW
- 3. Extension
- 4. Future
- 5. References

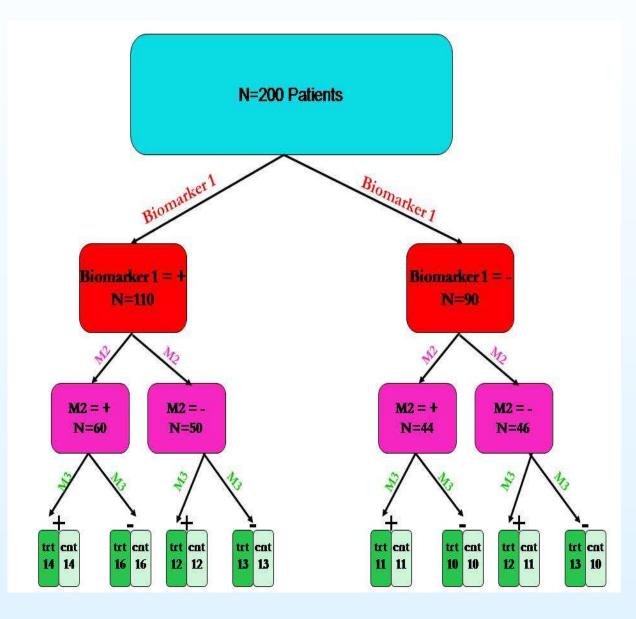
Future Work in Personalized Medicine

N=200 Patients









- Cluster Randomized Trial
- Overview
- 2. 2-ARM BMW
- 3. Extension
- 4. Future
- 5. References
- References

References

References

- Xu, Z. and Kalbfleisch, J.D (2010). Propensity Score Matching in Randomized Clinical Trials. *Biometrics*, 66, 813-823.
- Xu, Z. and Kalbfleisch, J.D (2012). Matching in Multi-arm Clinical Trials. *Biometrics*, Invited Revision.