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Cluster randomized trials (CRTs): aims to evaluate the effects of interventions

operated at the community level.

Features of Group Randomized Trials:

• social units are selected as the units of randomization

• small sample size

• all clusters have to be available prior to study onset
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INSTINCT Trial : Aims to investigate the effectiveness of an education program in

enhancing the tPA therapy use in stroke patients

Cluster-level Confounders:

• baseline stroke volume (low vs. high) (binary)

• population density (urban vs. rural) (binary)

• percent male older than 65 (continuous)

• percent female older than 65 (continuous)
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Propensity Score: δ(x) = Pr(Z = 1 | X);

• Rosenbaum and Rubin(1984) Theorem 1: x ⊥ z | δ(x)

• Implication: adjustment for the scalar propensity score is sufficient to

remove bias due to all observed covariates

• In non-randomized experiments: δ(x) is unknown, sample estimate δ̂(x)
can produce sample balance (Rosenbaum, 2002)

• In randomized clinical trials: δ(x) is known, however, matching on δ̂(x)
is still possible.
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• Applies optimal full matching with constraints technique to
estimated propensity score

• Aims to minimizes the MSE of the treatment effect estimator
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• Set up a model for the exposure or treatment variable Z to relate

treatment to potential confounders X . For example:

δ(x, β) = Pr(Z = 1 | X) = exp(β′X)/[1 + exp(β′X)]

• The estimated propensity score for the ith subject is

δ̂i(xi, β̂)
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Similarity of covariates is measured through an estimated propensity score
distance: Distance between i and j: di,j = |δ̂i − δ̂j |

Matching assembles treated and control units as similar as possible into a

same strata;
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The quality of a particular matching is measured by:

∆ =
S∑

s=1

w(|Ts|, |Cs|) • Ts × Cs

where

Ts × Cs =
∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j |/|Ts × Cs|

is the average distance between the |Ts × Cs| possible pairs in the s-th strata, and
w(., .) is a weight function.
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• Full matching: min(|Ts|, |Cs|) = 1, for s = 1, 2, ..., S.

• Rosenbaum (1991, Lemma 2) showed that if the w(·, ·) in (1) is neutral
or favors small subclasses, then there is always a full matching that is

optimal.

◦ neutral or favors small subclass:
w(|Ts|, |Cs|) ≥ w(|Ts| − 1, |Cs| − 1) + w(1, 1)

• Among the class of full matchings: w(|Ts|, |Cs|) = |Ts|+ |Cs| − 1,

∆ =

S∑

s=1

(|Ts|+ |Cs| − 1) • Ts × Cs =

S∑

s=1

∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j |.
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• Drawback of Full Matching: very unbalanced strata ⇒ precision loss;
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• Drawback of Full Matching: very unbalanced strata ⇒ precision loss;

• Remedy: Full Matching with Constraints k(Hansen, 2004);

• Find optimal full matching with constraint k:

Minimize ∆ =

S∑

s=1

∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j |

over the class of full matchings subject to k−1 ≤ |Ts|/|Cs| ≤ k.
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control to obtain sets T and C ;

• Step 2. Compute the estimated propensity scores and create the
|T | × |C| matrix of estimated propensity score distances;

• Step 3. Obtain the optimal full matching with constraint k and record the

total distance ∆k.

• Step 4. Repeat Step 1 to 3 M times; pick the randomized sample with

minimum total distance ∆∗

k = min(∆1k,∆2k, ...,∆Mk).
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• Choice of k (k = 1, 2, ..., N2 − 1):

◦ If γ is known and M is fixed,

Step 5. Compute MSE based on the randomization with ∆∗
k, then repeat

step 1 to 4 for all choices of k to find the optimal k∗ s.t.
MSEk∗ = min(MSE∗

1 ,MSE∗
2 , ...,MSE∗

N
2
−1

).
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• Choice of k (k = 1, 2, ..., N2 − 1):

◦ If γ is known and M is fixed,

Step 5. Compute MSE based on the randomization with ∆∗
k, then repeat

step 1 to 4 for all choices of k to find the optimal k∗ s.t.
MSEk∗ = min(MSE∗

1 ,MSE∗
2 , ...,MSE∗

N
2
−1

).

◦ If γ is unknown,

Simulation study suggests that k = 2 is a suitable choice under most of
the confounding scenarios;

• Choice of M : M ∈ [10, 20] suggested by simulation study;
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One possible model-based approach suggested by an AE:

Yi = α+ βI(i ∈ T ) + γδ̂i + εi.

• if the propensity score model is appropriately specified:

◦ True model: Yi = α+ βI(i ∈ T ) + γ1Xi + γ2X
2
i + εi

◦ Specified Model:
logit(δi) = logit(Pr(Z = 1 | Xi;α)) = α1 + α2Xi + α3X

2
i ,

• if the propensity score model is inappropriately specified:

◦ logit(δi) = logit(Pr(Z = 1 | Xi;α)) = α1 + α2Xi.
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Robins-Mark-Newey (1992) consistent E-estimator β̃E :

β̃E =

n∑

i=1

Yi(Zi − δ̂i)
/ n∑

i=1

Zi(Zi − δ̂i).

β̃E is consistent when the model for propensity score δ̂i is correctly specified.
The E-estimation procedure is designed for the observational studies.
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Robins-Mark-Newey (1992) consistent E-estimator β̃E :

β̃E =

n∑

i=1

Yi(Zi − δ̂i)
/ n∑

i=1

Zi(Zi − δ̂i).

β̃E is consistent when the model for propensity score δ̂i is correctly specified.
The E-estimation procedure is designed for the observational studies.

• Our simulation study suggests that the BMW approach is more efficient and
robust than the E-estimator.
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Greevy et al.(2004) suggest multivariate matching design based on
Mahalanobis distance:

• Form optimal nonbipartite matching on the multivariate Mahalanobis distance;

• Randomly assign treatments within each pair;
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Greevy et al.(2004) suggest multivariate matching design based on
Mahalanobis distance:

• Form optimal nonbipartite matching on the multivariate Mahalanobis distance;

• Randomly assign treatments within each pair;

• As the confounding effects increase or the number of covariates increase, the
BMW design becomes much more effective than Greevy’s design in reducing
MSE.
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• generating response: Yi = βZi +
r∑

j=1

γjXij + εi

• true treatment effect: β = 0.7

• true confounding effects: γj = γ, j = 1, ..., r where

γ = 0.5, 1.0, 1.5, 2.0

• covariate setting:

◦ X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5);

◦ X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ N(0, 0.25);

◦ X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ Bernoulli(0.66).

◦ X1, X2, X3, X4, X5, X6, X7, X8
i.i.d∼ Bernoulli(0.5)
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The BMW design versus:

• Completely Randomized Design;

• Matched-Pair Design;

• Model-based Approach;

• Robins-Mark-Newey’s E-estimator β̃E ;

• Greevy et al. multivariate matching design on Mahalanobis distance;
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Covariate Setting: X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

γj M (BMW vs. CR Design) (BMW vs. MP Design)
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

5 12.2 10.3 6.8 7.9 5.9 2.3
(0.5, 0.5, 0.5, 0.5) 10 14.4 11.7 7.1 10.2 7.5 2.6

20 17.4 13.5 8.8 13.4 9.3 4.4

5 35.6 43.5 39.6 24.5 33.9 29.3
(1.0, 1.0, 1.0, 1.0) 10 40.3 44.4 41.7 30.1 34.9 31.7

20 50.3 48.6 46.2 41.8 39.8 36.9

5 54.5 72.2 69.0 39.8 63.2 59.0
(2.0, 2.0, 2.0, 2.0) 10 61.4 73.7 70.3 49.0 65.3 60.8

20 68.5 74.1 71.4 58.5 65.7 62.3
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Covariate Setting: X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)
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k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

5 12.2 10.3 6.8 7.9 5.9 2.3
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• Confounding Effects γ;• Constraint k: k = 2;• Replication M : M = 10:
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• Effects of Covariate Settings:

γj M (BMW vs. CR Design) (BMW vs. MP Design)
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d
∼ Bernoulli(0.5)

5 35.6 43.5 39.6 24.5 33.9 29.3
(1.0,1.0,1.0,1.0) 10 40.3 44.4 41.7 30.1 34.9 31.7

20 50.3 48.6 46.2 41.8 39.8 36.9

X1, X2
i.i.d
∼ Bernoulli(0.5);X3, X4

i.i.d
∼ Bernoulli(0.66)

5 32.2 40.7 36.7 20.9 30.9 26.2
(1.0,1.0,1.0,1.0) 10 37.9 43.1 39.3 27.6 33.7 29.3

20 41.8 44.1 41.2 32.2 34.8 31.4

X1, X2
i.i.d
∼ Bernoulli(0.5);X3, X4

i.i.d
∼ N(0, 0.25)

5 24.3 30.7 27.2 13.2 20.5 16.5
(1.0,1.0,1.0,1.0) 10 28.8 32.4 29.1 18.3 22.4 18.7

20 32.8 33.0 30.1 22.9 23.2 19.8

X1, X2, X3, X4, X5, X6, X7, X8
i.i.d
∼ Bernoulli(0.5)

5 28.7 52.4 52.2 23.3 48.8 48.6
(1.0,1.0,1.0,1.0, 10 35.8 56.1 53.1 30.9 52.8 49.5
1.0,1.0,1.0,1.0) 20 43.2 57.6 54.2 38.9 54.4 50.7
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• BMW vs. model-based approach:

MSE MSE Percent Reduction(%)
γ M ( MB ) (BMW vs. MB)

k = 1 k = 2 k = 3

where propensity score inappropriately specified (17) (18)

X
i.i.d
∼ Normal(0, 0.25)

(0.5, 0.5) 10 0.185 0.65 14.75 12.25
(1.0, 1.0) 10 0.365 -0.15 30.03 32.31
(1.5, 1.5) 10 0.665 5.80 41.88 46.12

where propensity score appropriately specified (15) (16)

X1, X2, X3, X4
i.i.d
∼ Bernoulli(0.5)

(0.5,0.5,0.5,0.5) 10 0.165 15.01 15.74 6.79
(1.0,1.0,1.0,1.0) 10 0.166 -0.87 6.02 1.44
(1.5,1.5,1.5,1.5) 10 0.166 -29.84 -2.49 -11.31
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• BMW vs. Robins-Mark-Newey E-estimator:

MSE MSE Percent Reduction(%)
γ M (E − est) (BMW vs. E − est)

k = 1 k = 2 k = 3

where propensity score inappropriately specified (17) (18)

X
i.i.d
∼ Normal(0, 0.25)

(0.5, 0.5) 10 0.334 45.06 52.85 51.47
(1.0, 1.0) 10 0.964 62.10 73.52 74.39
(1.5, 1.5) 10 2.013 68.90 80.81 82.21

where propensity score appropriately specified (15) (16)

X1, X2, X3, X4
i.i.d
∼ Bernoulli(0.5)

(0.5,0.5,0.5,0.5) 10 0.211 33.41 33.98 26.97
(1.0,1.0,1.0,1.0) 10 0.528 68.38 70.54 69.10
(1.5,1.5,1.5,1.5) 10 0.971 77.85 82.52 81.01
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• BMW vs. multivariate non-bipartite matching design:

MSE MSE Percent Reduction(%)

γ
8∑

j=1
γj M (NB Design) (BMW vs. NB Design)

k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d
∼ Bernoulli(0.5)

5 2.42 14.49 8.53
(1.0,1.0,1.0,1.0) 4 10 0.185 9.62 15.79 11.68

20 24.78 22.18 18.44

X1, X2, X3, X4, X5, X6, X7, X8
i.i.d
∼ Bernoulli(0.5)

5 -25.19 16.39 16.07
(1.0,1.0,1.0,1.0, 8 10 0.222 -12.76 22.92 17.65
1.0,1.0,1.0,1.0) 20 0.26 25.53 19.59
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• Cluster-level confounders:

◦ Stroke Volume;

◦ Population Density;

◦ Percent male greater than 65;

◦ Percent Female greater than 65;

• Matched-Pair Design: Optimally Matched on Stroke Volume and Population

Density;

• BMW Design:

◦ When γ′
js are unknown: k = 2; M = 10;
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Treatment Group Control Group

Strata ID(δ̂) X1 X2 X3 X4 ID(δ̂) X1 X2 X3 X4

1 1 (0.33) 0.15 0.13 0 0 6 (0.35) 0.19 0.07 0 0
2 2 (0.38) 0.17 0.11 1 0 8 (0.35) 0.22 0.14 0 0

11 (0.40) 0.22 0.14 1 0
3 3 (0.63) 0.13 0.06 1 1 9 (0.63) 0.14 0.06 1 1

19 (0.67) 0.25 0.15 1 1
4 4 (0.58) 0.12 0.06 0 1 12 (0.60) 0.07 0.06 1 1
5 14 (0.32) 0.13 0.07 0 0 13 (0.32) 0.13 0.09 0 0

15 (0.31) 0.10 0.06 0 0
6 17 (0.41) 0.24 0.12 1 0 10 (0.41) 0.26 0.18 1 0

22 (0.43) 0.30 0.17 1 0
7 20 (0.60) 0.08 0.06 1 1 16 (0.61) 0.10 0.07 1 1

18 (0.61) 0.09 0.05 1 1
8 21 (0.60) 0.18 0.14 0 1 5 (0.61) 0.19 0.13 0 1
9 24 (0.62) 0.23 0.16 0 1 7 (0.62) 0.24 0.19 0 1

23 (0.62) 0.11 0.07 1 1
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• BMW design reduces the chance imbalance on observed covariates and retains
random assignment to balance on average over unobserved;

• The design is flexible to choose other criteria besides MSE to trade-off bias and
variance;

• Carefully chosen M :

◦ The larger M is, the better balance BMW can attain; M = 100 and k = 1 is
recommended;

◦ If M is too large (M close to
(N

N
2

)
), e.g. M = ∞ and k = 1, the BMW design always lead

to th same set of matched pair with same treatment assignment for continuous covariates;

• Advantages of BMW design over model based covariate adjustment approach:

◦ Simple;

◦ Performs well for small studies: does not require a valid model of the covariate effects.
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Two major areas of Generalization:

• Cluster Randomized Trials with more than two arms;

• Clinical Trials with Staggered Entry – Adaptive Randomization Design;
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• For three groups:
A = {ηA1 , ..., ηAN/3},B = {ηB1 , ..., ηBN/3}, C = {ηC1 , ..., ηCN/3}:

• Baseline category model to relates treatment to confounders:

δt,i = Pr(Z = t | Xi;αt) = exp{αtX
T
i }/{1+exp{α1X

T
i }+exp{α2X

T
i }}

where t = 1, 2, 3 with α3 = 0.

• The estimated propensity score for the ith subject is

(δ̂1,i, δ̂2,i, δ̂3,i)

• similarity of covariates is measured through an estimated Euclidean distance:

δ{(ηAi , ηBj )} =
√

(δ̂A1,i − δ̂B1,j)
2 + (δ̂A2,i − δ̂B2,j)

2 + (δ̂A3,i − δ̂B3,j)
2
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How to optimally match on three groups?

• The Optimal tripartite matching
problem: NP complete problem;

• Given group Size m, number of
comparisons = (m!)2;

◦ Group Size m = 3, number of
comparisons = 36;

◦ Group Size m = 4, number of
comparisons = 576;

◦ Group Size m = 5, number of
comparisons = 14400;

◦ Group Size m = 6, number of
comparisons = 518400;

◦ Group Size m = 10, number of
comparisons = 1.316819e13;

• Ad hoc approaches which may not lead to the optimal matching, but to the
solutions that are close to optimal were developed.
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Bo and Rosenbaum (2004): P is an optimal non-bipartite matching with

∆(P ) < +∞ if and only if P is also an optimal, feasible tripartite matching.

• Given a single set
Θ = A⋃B⋃ C = (ηA1 , ..., η

A
N/3, η

B
1 , ..., ηBN/3, η

C
1 , ...η

C
N/3);

•

δ{(ηmi , ηnj )} =

{ √
(δ̂m1,i − δ̂n1,j)

2 + (δ̂m2,i − δ̂n2,j)
2 + (δ̂m3,i − δ̂n3,j)

2 if m 6= n;

+∞ if m = n.

• Find the optimal non-bipartite matching;
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How to obtain incomplete block of disjoint pairs through optimal nonbipartite matching?
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• ∆∗
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MA,C
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B,C
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= ∆∗
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+ ∆∗
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A,C
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• With group B as predefined refer-
ence group:

• ∆∗
B = ∆∗

MA,B
+∆∗

MB,C

• ∑
ω∈M+

A,C
δ(ω) is not taken into

account;
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Model: Yi = α+ β1I(Zi = 1) + β2I(Zi = 2) + γT
Xi + εi

• Pooled Samples:

β̂1,pool = yA − yC ;

MSE(β̂1,pool) =
6

N
γTΣγ +

6

N
σ2

• Matched Samples (ICB Design):

β̂ICB
1 = 2

3
(yA13 − yC13) +

1
3
[(yA12 − yB12) + (yB23 − yC23)]

MSE(β̂ICB
1 ) =

1

9
γT Cov∗[2(XA13−XC13)+(XA12−XB12)+(XB23−XC23)]γ+8σ2/N

• Matched Samples (ATM and STM Design):

β̂ATM
1 = β̂STM

1 = yA − yC

MSE(β̂STM
1 ) = γT Cov∗∗(XA −XC)γ + 6σ2/N.
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The design for three-arms trials with specified parameter M :

• Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups
A,B and C, respectively;

• Step 2. Compute the estimated probability of being assigned to each treatment
group to create the |N | × |N | matrix of estimated Euclidean distances;

• Step 3. Obtain the optimal matched samples based on a matching algorithm:

◦ incomplete block design with disjoint pairs;

◦ asymmetric tripartite matching design;

◦ symmetric tripartite matching design.

Record the minimum total distance ∆ for the given randomization.

• Step 4. Repeat Steps 1 to 3 for M times and choose the randomization with
minimum total distance ∆∗ = min(∆1,∆2, ...,∆M ).
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• generating response:

Yi = β1I(Zi = 1) + β2I(Zi = 2) + γT
Xi + εi, i = 1, 2, ...N

• true treatment effect: β1 = β2 = 0.5

• true confounding effects: γj = γ, j = 1, ..., r, where γ = 0.5, 1.0, 1.5

• covariate setting:

◦ X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5) ;

◦ X1, X2
i.i.d∼ Bernoulli(0.5) ; X3, X4

i.i.d∼ N(0, 0.25)

• We consider sample sizes N = 24 or 36;



The BMW Design with Three Arms: Simulation Results N = 24
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MSE MSE Percent Reduction(%)
γ M ( CR ) (ICB vs. CR Design) (STM vs. CR Design) (ATM vs. CR Design)

β̂1 = β̂AC β̂1 = β̂AC β̂1 or β̂2 β̂AB = β̂1 − β̂2

X1, X2, X3, X4
i.i.d
∼ Bernoulli(0.5)

0.5 100 0.312 -11.95 15.52 15.23 15.42
1.0 100 0.487 18.05 37.02 38.18 34.58
1.5 100 0.806 40.20 53.61 55.56 47.96

X1, X2
i.i.d
∼ Bernoulli(0.5);X3, X4

i.i.d
∼ N(0, 0.25)

0.5 100 0.288 -19.11 10.12 10.36 9.14
1.0 100 0.403 7.11 28.74 29.38 27.28
1.5 100 0.600 29.24 44.37 45.44 42.23
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How close the proposed symmetric tripartite matching is to the true optimal

tripartite matching method?

• Model:

Yi = β1I(Zi = 1) + β2I(Zi = 2) + γXi + εi, i = 1, 2, ...18

where Xi
i.i.d∼ N (0, 0.25) and εi

i.i.d∼ N (0, 1) and N = 3× 6 = 18

• Algorithm: Dynamic programming algorithm;

• Results: The symmetric tripartite matching algorithm is nearly optimal:

◦ Difference in minimum Euclidean Distances;

◦ MSE of treatment effect estimator;
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• The 3-arms BMW design can be further extended to be used in 4-arms or larger
trials, e.g. 2x2 factorial design;

◦ The symmetric quadripartite matching;
√

◦ The asymmetric quadripartite matching;
√

◦ Method of finding Optimal balanced incomplete block design through
nonbipartite matching; ×

• Limitation: The BMW design may not perform well in the studies with very small
sample size (e.g. group size < 10 and number of covariates ≥ 4);

◦ The propensity score model may not work well due to the complete
separation of cases and controls by covariates;

◦ One might drop less important covariates;
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