Propensity Scoring matching in Cluster Randomized Trials

Zhenzhen XuAbbott Laboratories, Chicago IL

Joint work with John D. KalbfleischDepartment of Biostatistics, University of Michigan

> BASS XIXSavannah, Georgia

Cluster randomized trials (CRTs): aims to evaluate the effects of interventionsoperated at the community level.

Cluster randomized trials (CRTs): aims to evaluate the effects of interventionsoperated at the community level.

Features of Group Randomized Trials:

- social units are selected as the units of randomization
- small sample size
- all clusters have to be available prior to study onset

Overview

- Propensity Scoring matching in Cluster Randomized Trials with Two Arms
	- Introduction and Motivating Examples
	- Propensity Score Matching
	- The BMW Design
	- Simulation study and Application
- \bullet Extension of BMW design to Clinical Trials with Three or More Arms
- Future Work

• Cluster [Randomized](#page-1-0) **Trial**

• [Overview](#page-3-0)

2. [2-ARM](#page-4-0) BMW

- [Introduction](#page-5-0)
- [PS](#page-7-0)
- [BMW](#page-9-0)
- [Matching](#page-11-0)
- [Model](#page-19-0)
- [Design](#page-23-0)
- [Simulations](#page-39-0)
- [Application](#page-49-0)
- [Discussion](#page-53-0)
- 3. [Extension](#page-55-0)
- 4. [Future](#page-88-0)
- 5. [References](#page-94-0)

2. Propensity Scoring matching in Cluster Randomized Trials with Two Arms

INSTINCT Trial: Aims to investigate the effectiveness of an education program in enhancing the tPA therapy use in stroke patients

Introduction and Motivating Examples

INSTINCT Trial: Aims to investigate the effectiveness of an education program in enhancing the tPA therapy use in stroke patientsCluster-level Confounders:

- baseline stroke volume (low vs. high) (binary)
- population density (urban vs. rural) (binary)
- percent male older than 65 (continuous)
- percent female older than 65 (continuous)

Propensity Score

Propensity Score: $\delta(x) = Pr(Z = 1 | X)$;

- Rosenbaum and Rubin(1984) *Theorem 1:* $x \perp z \mid \delta(x)$
- Implication: adjustment for the scalar propensity score is sufficient to remove bias due to <mark>all observed covariates</mark>

Propensity Score

Propensity Score: $\delta(x) = Pr(Z = 1 | X)$;

- Rosenbaum and Rubin(1984) *Theorem 1:* $x \perp z \mid \delta(x)$
- •Implication: adjustment for the scalar propensity score is sufficient to remove bias due to <mark>all observed covariates</mark>
- $\bullet \,\,$ In non-randomized experiments: $\delta(x)$ is unknown, sample estimate $\hat{\delta}(x)$ can produce sample balance (Rosenbaum, 2002)
- $\bullet \,\,$ In randomized clinical trials: $\delta(x)$ is known, however, matching on $\hat{\delta}(x)$ is still possible.

The BMW Design

- Applies optimal full matching with constraints technique to estimated propensity score
- Aims to minimizes the MSE of the treatment effect estimator

Propensity Score Matching in Observational Studies

• Set up a model for the exposure or treatment variable Z to relate treatment to potential confounders $X.$ For example:

$$
\delta(x,\beta) = Pr(Z=1 | X) = \exp(\beta'X) / [1 + \exp(\beta'X)]
$$

• The estimated propensity score for the i^{th} subject is

 $\hat{\delta}_i(x_i,\hat{\beta})$

Similarity of covariates is measured through an estimated propensity scoredistance: Distance between i and j : $d_{i,j}=|\hat{\delta}_i \hat{\delta}_j |$

Matching assembles treated and control units as similar as possible into ^asame strata;

The quality of ^a particular matching is measured by:

$$
\Delta = \sum_{s=1}^{S} w(|T_s|, |C_s|) \bullet \overline{T_s \times C_s}
$$

where

$$
\overline{T_s \times C_s} = \sum_{(i,j) \in T_s \times C_s} |\hat{\delta}_i - \hat{\delta}_j| / |T_s \times C_s|
$$

is the average distance between the $|T_s\times C_s|$ possible pairs in the s-th strata, and $w(.,.)$ is a weight function.

Optimal Full Matching

• Full matching: $\min(|T_s|,|C_s|) = 1$, for $s = 1, 2, ..., S$.

Optimal Full Matching

- Full matching: $\min(|T_s|,|C_s|) = 1$, for $s = 1, 2, ..., S$.
- \bullet Rosenbaum (1991, Lemma 2) showed that if the $w(\cdot, \cdot)$ in (1) is *neutral* or *favors small subclasses*, then there is always a full matching that is optimal.

◦ neutral or favors small subclass: $w(|T_s|, |C_s|) \geq w(|T_s|-1, |C_s|-1) + w(1, 1)$

Optimal Full Matching

- Full matching: $\min(|T_s|,|C_s|) = 1$, for $s = 1, 2, ..., S$.
- \bullet Rosenbaum (1991, Lemma 2) showed that if the $w(\cdot, \cdot)$ in (1) is *neutral* or *favors small subclasses*, then there is always a full matching that is optimal.

◦ neutral or favors small subclass: $w(|T_s|, |C_s|) \geq w(|T_s|-1, |C_s|-1) + w(1, 1)$

• Among the class of full matchings: $w(|T_s|, |C_s|) = |T_s| + |C_s| - 1$,

$$
\Delta = \sum_{s=1}^{S} (|T_s| + |C_s| - 1) \bullet \overline{T_s \times C_s} = \sum_{s=1}^{S} \sum_{(i,j) \in T_s \times C_s} |\widehat{\delta}_i - \widehat{\delta}_j|.
$$

Optimal Full Matching with constraints

• Drawback of Full Matching: very unbalanced strata ⇒ precision loss;

Optimal Full Matching with constraints

- Drawback of Full Matching: very unbalanced strata ⇒ precision loss;
- Remedy: Full Matching with Constraints k (Hansen, 2004);

Optimal Full Matching with constraints

- Drawback of Full Matching: very unbalanced strata ⇒ precision loss;
- Remedy: Full Matching with Constraints k (Hansen, 2004);
- Find optimal full matching with constraint k :

$$
\text{Minimize } \Delta = \sum_{s=1}^{S} \sum_{(i,j) \in T_s \times C_s} |\widehat{\delta}_i - \widehat{\delta}_j|
$$

over the class of full matchings subject to $k^{-1} \leq |T_s|/|C_s| \leq k.$

$$
Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;
$$

13 / 48

$$
Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;
$$

\n- **Pooled Sample:**
$$
\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C
$$
 Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$ $\text{Var}[\hat{\beta}_{pool} \mid T, C, X] = \frac{2}{N} \sigma^2$
\n

$$
Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;
$$

\n- **Pooled Sample:**
$$
\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C
$$
 Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$ $\text{Var}[\hat{\beta}_{pool} \mid T, C, X] = \frac{2}{N} \sigma^2$
\n

\n- \n Matched Sample: \n
$$
\hat{\beta}_{strata} = \sum_{s=1}^{S} w_s \hat{\beta}_{strata,s} = \sum_{s=1}^{S} w_s (\bar{y}_{T_s} - \bar{y}_{C_s})
$$
\n \n Bias[
$$
\hat{\beta}_{strata} | T, C, X] = \sum_{s=1}^{S} w_s (\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT_s} - \bar{X}_{jC_s}))
$$
\n \n Var[
$$
\hat{\beta}_{strata} | T, C, X] = \sum_{s=1}^{S} w_s^2 (\frac{1}{|T_s|} + \frac{1}{|C_s|}) \sigma^2
$$
\n
\n

$$
Y_i = \alpha + \beta I(i \in T) + \sum_{j=1}^r \gamma_j X_{ij} + \varepsilon_i;
$$

\n- **Pooled Sample:**
$$
\hat{\beta}_{pool} = \bar{y}_T - \bar{y}_C
$$
 Bias[$\hat{\beta}_{pool} \mid T, C, X$] = $\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT} - \bar{X}_{jC})$ $\text{Var}[\hat{\beta}_{pool} \mid T, C, X] = \frac{2}{N} \sigma^2$
\n

\n- \n Matched Sample: \n
$$
\hat{\beta}_{strata} = \sum_{s=1}^{S} w_s \hat{\beta}_{strata,s} = \sum_{s=1}^{S} w_s (\bar{y}_{T_s} - \bar{y}_{C_s})
$$
\n \n Bias[
$$
\hat{\beta}_{strata} | T, C, X] = \sum_{s=1}^{S} w_s (\sum_{j=1}^{r} \gamma_j (\bar{X}_{jT_s} - \bar{X}_{jC_s}))
$$
\n \n Var[
$$
\hat{\beta}_{strata} | T, C, X] = \sum_{s=1}^{S} w_s^2 (\frac{1}{|T_s|} + \frac{1}{|C_s|}) \sigma^2
$$
\n
\n

The BMW Design

• Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C ;

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C ;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C ;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance $\Delta_k.$

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C ;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance $\Delta_k.$
- Step 4. Repeat Step 1 to 3 M times; pick the randomized sample with minimum total distance $\Lambda^* = \min(\Lambda_{\text{max}} \Lambda_{\text{max}})$ minimum total distance $\Delta_k^* = \min(\Delta_{1k}, \Delta_{2k}, ..., \Delta_{Mk}).$

- Step 1. Randomize half of the subjects to the treatment group, and half to control to obtain sets T and C ;
- Step 2. Compute the estimated propensity scores and create the $|T| \times |C|$ matrix of estimated propensity score distances;
- Step 3. Obtain the optimal full matching with constraint k and record the total distance $\Delta_k.$
- Step 4. Repeat Step 1 to 3 M times; pick the randomized sample with minimum total distance $\Lambda^* = \min(\Lambda_{\text{max}} \Lambda_{\text{max}})$ minimum total distance $\Delta_k^* = \min(\Delta_{1k}, \Delta_{2k}, ..., \Delta_{Mk}).$

The BMW Design (cont'd): choices ofk **and**M

• Choice of
$$
k
$$
 ($k = 1, 2, ..., \frac{N}{2} - 1$):

The BMW Design (cont'd): choices ofk **and**M

• Choice of
$$
k
$$
 ($k = 1, 2, ..., \frac{N}{2} - 1$):

 \circ If γ is known and M is fixed,

S*tep 5.* Compute MSE based on the randomization with Δ_k^* $_k^*$, then repeat step 1 to 4 for all choices of k to find the optimal k^* s.t. $MSE_{k^*} = \min(MSE_1^*, MSE_2^*, ..., MSE_N^*$ $_{*}=\min(MSE_{1}^{*}% \times\{N_{0}\}_{N_{0}}^{N_{0}})_{N_{0}}\label{eq:4}$ $_1^\ast, MSE_2^\ast$ $\mathbb{Z}_2^{*},...,\allowbreak MSE_{\frac{N}{2}}^{*}$ N $(\frac{N}{2}-1)$.

The BMW Design (cont'd): choices ofk **and**M

• Choice of
$$
k
$$
 ($k = 1, 2, ..., \frac{N}{2} - 1$):

 \circ If γ is known and M is fixed,

S*tep 5.* Compute MSE based on the randomization with Δ_k^* $_k^*$, then repeat step 1 to 4 for all choices of k to find the optimal k^* s.t. $MSE_{k^*} = \min(MSE_1^*, MSE_2^*, ..., MSE_N^*$ $_{*}=\min(MSE_{1}^{*}% \times\{N_{0}\}_{N_{0}}^{N_{0}})_{N_{0}}\label{eq:4}$ $_1^\ast, MSE_2^\ast$ $\mathbb{Z}_2^{*},...,\allowbreak MSE_{\frac{N}{2}}^{*}$ N $(\frac{N}{2}-1)$.

 \circ If γ is unknown,

Simulation study suggests that $k=2$ is a suitable choice under most of the confounding scenarios;

• Choice of $M\colon M\in[10,20]$ suggested by simulation study;

Alternative Approaches I

One possible <mark>model-based approach</mark> suggested by an AE:

$$
Y_i = \alpha + \beta I(i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.
$$

Alternative Approaches I

One possible <mark>model-based approach</mark> suggested by an AE:

 $Y_i = \alpha + \beta I (i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.$

- $\bullet\;$ if the propensity score model is *appropriately* specified:
	- \circ True model: $Y_i = \alpha + \beta I (i \in T) + \gamma_1 X_i + \gamma_2 X_i^2$ $\frac{2}{i} + \varepsilon_i$
	- Specified Model: $\textsf{logit}(\delta_i) = \textsf{logit}(Pr(Z = 1 \mid X_i; \alpha)) = \alpha_1 + \alpha_2 X_i + \alpha_3 X_i^2$;
, $i\,$,

Alternative Approaches I

One possible <mark>model-based approach</mark> suggested by an AE:

 $Y_i = \alpha + \beta I (i \in T) + \gamma \widehat{\delta}_i + \varepsilon_i.$

- $\bullet\;$ if the propensity score model is *appropriately* specified:
	- \circ True model: $Y_i = \alpha + \beta I (i \in T) + \gamma_1 X_i + \gamma_2 X_i^2$ $\frac{2}{i} + \varepsilon_i$
	- Specified Model: $\textsf{logit}(\delta_i) = \textsf{logit}(Pr(Z = 1 \mid X_i; \alpha)) = \alpha_1 + \alpha_2 X_i + \alpha_3 X_i^2$;
, $i\,$,
- if the propensity score model is *inappropriately* specified:

 \circ logit $(\delta_i) = \text{logit}(Pr(Z = 1 | X_i; \alpha)) = \alpha_1 + \alpha_2 X_i.$;

Alternative Approaches II

Robins-Mark-Newey (1992) consistent E-estimator $\widetilde{\beta_E}$:

$$
\widetilde{\beta_E} = \sum_{i=1}^n Y_i (Z_i - \widehat{\delta}_i) / \sum_{i=1}^n Z_i (Z_i - \widehat{\delta}_i).
$$

 $\widetilde{\beta_E}$ \mathcal{L}_E is consistent when the model for propensity score $\widehat{\delta}_i$ is $\boldsymbol{\mathit{correctly}}$ specified. The E-estimation procedure is designed for the observational studies.
Alternative Approaches II

Robins-Mark-Newey (1992) consistent E-estimator $\widetilde{\beta_E}$:

$$
\widetilde{\beta_E} = \sum_{i=1}^n Y_i (Z_i - \widehat{\delta}_i) / \sum_{i=1}^n Z_i (Z_i - \widehat{\delta}_i).
$$

 $\widetilde{\beta_E}$ \mathcal{L}_E is consistent when the model for propensity score $\widehat{\delta}_i$ is $\boldsymbol{\mathit{correctly}}$ specified. The E-estimation procedure is designed for the observational studies.

• Our simulation study suggests that the BMW approach is more efficient and robust than the E-estimator.

Greevy et al.(2004) suggest multivariate matching design based onMahalanobis distance:

- Form optimal nonbipartite matching on the multivariate Mahalanobis distance;
- Randomly assign treatments within each pair;

Greevy et al.(2004) suggest multivariate matching design based onMahalanobis distance:

- Form optimal nonbipartite matching on the multivariate Mahalanobis distance;
- Randomly assign treatments within each pair;
- As the confounding effects increase or the number of covariates increase, the BMW design becomes much more effective than Greevy's design in reducing MSE.

Simulation Study

- generating response: $Y_i = \beta Z_i + \sum_{i=1}^n$ $r\,$ $j=1$ $\gamma_jX_{ij}+\varepsilon_i$
- true treatment effect: $\beta = 0.7$
- true confounding effects: $\gamma_j = \gamma, j = 1, ..., r$ where $\gamma~=~0.5,~1.0,~1.5,~2.0$
- covariate setting:

\n- \n
$$
X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5);
$$
\n
\n- \n $X_1, X_2 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5); X_3, X_4 \stackrel{i.i.d}{\sim} N(0, 0.25);$ \n
\n- \n $X_1, X_2 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5); X_3, X_4 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.66).$ \n
\n- \n $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5)$ \n
\n

Simulation Study: Competing Designs

The BMW design versus:

- Completely Randomized Design;
- Matched-Pair Design;
- \bullet Model-based Approach;
- \bullet • Robins-Mark-Newey's E-estimator $\widetilde{\beta_E};$
- Greevy et al. multivariate matching design on Mahalanobis distance;

Covariate Setting: X_1, X_2, X_3, X_4 $i.i.d$ $\stackrel{...}{\sim}$ Bernoulli (0.5)

Covariate Setting: X_1, X_2, X_3, X_4 $i.i.d$ $\stackrel{...}{\sim}$ Bernoulli (0.5)

• Confounding Effects γ ;

Covariate Setting: X_1, X_2, X_3, X_4 $i.i.d$ $\stackrel{...}{\sim}$ Bernoulli (0.5)

• Confounding Effects γ ;• Constraint k : $k=2$;

Covariate Setting: X_1, X_2, X_3, X_4 $i.i.d$ $\stackrel{...}{\sim}$ Bernoulli (0.5)

• Confounding Effects γ ;• Constraint k : $k=2$;• Replication M : $M=10$:

• Effects of Covariate Settings:

• BMW vs. model-based approach:

where propensity score **inappropriately** specified (17) (18)

 $X\overset{i.i.d}{\sim}Normal(0,0.25)$

where propensity score **appropriately** specified (15) (16)

 X_1, X_2, X_3, X_4 $\stackrel{i.i.d}{\sim} Bernoulli(0.5)$

• BMW vs. Robins-Mark-Newey E-estimator:

where propensity score **inappropriately** specified (17) (18)

 $X \stackrel{i.i.d}{\sim} Normal(0, 0.25)$

where propensity score **appropriately** specified (15) (16)

 X_1, X_2, X_3, X_4 $\stackrel{i.i.d}{\sim} Bernoulli(0.5)$

• BMW vs. multivariate non-bipartite matching design:

Application to Instinct Trial

- Cluster-level confounders:
	- Stroke Volume;
	- Population Density;
	- Percent male greater than 65;
	- Percent Female greater than 65;

Application to Instinct Trial

- Cluster-level confounders:
	- Stroke Volume;
	- Population Density;
	- Percent male greater than 65;
	- Percent Female greater than 65;
- Matched-Pair Design: Optimally Matched on Stroke Volume and Population Density;

Application to Instinct Trial

- \bullet Cluster-level confounders:
	- Stroke Volume;
	- Population Density;
	- Percent male greater than 65;
	- Percent Female greater than 65;
- Matched-Pair Design: Optimally Matched on Stroke Volume and Population Density;
- \bullet BMW Design:

 \circ When $\gamma_j's$ are unknown: $k=2;$ $M=10;$

Application to Instinct Trial: BMW results

Discussion

- BMW design reduces the chance imbalance on observed covariates and retains random assignment to balance on average over <mark>unobserved</mark>;
- The design is flexible to choose other criteria besides MSE to trade-off bias and variance;
- Carefully chosen M :
	- The larger M is, the better balance BMW can attain; $M = 100$ and $k = 1$ is recommended: recommended;
	- If M is too large $(M$ close to $\left(\frac{N}{2}\right)$), e.g. $M = \infty$ and $k = 1$, the BMW design always lead to th same set of matched pair with same treatment assignment for continuous covariates;
- Advantages of BMW design over model based covariate adjustment approach:
	- Simple;
	- \circ Performs well for small studies: does not require a valid model of the covariate effects.

Two major areas of Generalization:

- Cluster Randomized Trials with more than two arms;
- Clinical Trials with Staggered Entry Adaptive Randomization Design;
- • Cluster [Randomized](#page-1-0) **Trial**
- [Overview](#page-3-0)
- 2. [2-ARM](#page-4-0) BMW
- 3. [Extension](#page-55-0)
- [Matching](#page-56-0)
- Ad Hoc [Methods](#page-65-0)
- [Model](#page-72-0)
- BMW [Design](#page-76-0)
- [Simulations](#page-81-0)
- True [Optimum](#page-83-0)
- [Discussion](#page-87-0)
- 4. [Future](#page-88-0)
- 5. [References](#page-94-0)

3. Extension to CRT with Three or MoreArms

• For three groups:

$$
\mathcal{A} = \{\eta_1^A, ..., \eta_{N/3}^A\}, \mathcal{B} = \{\eta_1^B, ..., \eta_{N/3}^B\}, \mathcal{C} = \{\eta_1^C, ..., \eta_{N/3}^C\}.
$$

- For three groups: $\mathcal{A} = \{\eta^A_1, ..., \eta^A_{N/3}\}, \mathcal{B} = \{\eta^B_1, ..., \eta^B_{N/3}\}, \mathcal{C} = \{\eta^C_1, ..., \eta^C_{N/3}\}.$
- Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t | \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp{\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\}}/{\{1 + \exp{\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\}} + \exp{\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}}\}}$

where $t=1,2,3$ with $\boldsymbol{\alpha}_3=0.$

- For three groups: $\mathcal{A} = \{\eta^A_1, ..., \eta^A_{N/3}\}, \mathcal{B} = \{\eta^B_1, ..., \eta^B_{N/3}\}, \mathcal{C} = \{\eta^C_1, ..., \eta^C_{N/3}\}.$
- Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t | \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp{\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\}}/{\{1 + \exp{\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\}} + \exp{\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}}\}}$

where $t=1,2,3$ with $\boldsymbol{\alpha}_3=0.$

•• The estimated propensity score for the i^{th} subject is

 $(\hat{\delta}_{1,i}, \hat{\delta}_{2,i}, \hat{\delta}_{3,i})$

- For three groups: $\mathcal{A} = \{\eta^A_1, ..., \eta^A_{N/3}\}, \mathcal{B} = \{\eta^B_1, ..., \eta^B_{N/3}\}, \mathcal{C} = \{\eta^C_1, ..., \eta^C_{N/3}\}.$
- Baseline category model to relates treatment to confounders:

 $\delta_{t,i} = Pr(Z = t | \mathbf{X}_i; \boldsymbol{\alpha}_t) = \exp{\{\boldsymbol{\alpha}_t \mathbf{X}_i^T\}}/{\{1 + \exp{\{\boldsymbol{\alpha}_1 \mathbf{X}_i^T\}} + \exp{\{\boldsymbol{\alpha}_2 \mathbf{X}_i^T\}}\}}$

where $t=1,2,3$ with $\boldsymbol{\alpha}_3=0.$

•• The estimated propensity score for the i^{th} subject is

$$
(\hat{\delta}_{1,i},\hat{\delta}_{2,i},\hat{\delta}_{3,i})
$$

• similarity of covariates is measured through an estimated Euclidean distance:

$$
\delta\{(\eta_i^A, \eta_j^B)\} = \sqrt{(\hat{\delta}_{1,i}^A - \hat{\delta}_{1,j}^B)^2 + (\hat{\delta}_{2,i}^A - \hat{\delta}_{2,j}^B)^2 + (\hat{\delta}_{3,i}^A - \hat{\delta}_{3,j}^B)^2}
$$

How to optimally match on three groups?

How to optimally match on three groups?

• Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

How to optimally match on three groups?

• The Optimal tripartite matching problem: NP complete problem;

• Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

How to optimally match on three groups?

- The Optimal tripartite matching problem: NP complete problem;
- Given group Size m , number of comparisons = $(m!)^2$;
	- Group Size $m = 3$, number of comparisons 36 comparisons = 36 ;
	- Group Size $m = 4$, number of comparisons 576: comparisons = 576 ;
	- Group Size $m = 5$, number of comparisons 14400 comparisons = 14400 ;
	- Group Size $m = 6$, number of comparisons 518400 comparisons = 518400 ;
	- Group Size $m = 10$, number of comparisons 1.316810 e^{13} . comparisons = $1.316819e^{13}$;

How to optimally match on three groups?

- The Optimal tripartite matching problem: NP complete problem;
- Given group Size m , number of comparisons = $(m!)^2$;
	- Group Size $m = 3$, number of comparisons 36 comparisons = 36 ;
	- Group Size $m = 4$, number of comparisons 576: comparisons = 576 ;
	- Group Size $m = 5$, number of comparisons 14400 comparisons = 14400 ;
	- Group Size $m = 6$, number of comparisons 518400 comparisons = 518400 ;
	- Group Size $m = 10$, number of comparisons 1.316810 e^{13} . comparisons = $1.316819e^{13}$;
- Ad hoc approaches which may not lead to the optimal matching, but to the solutions that are close to optimal were developed.

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

Bo and Rosenbaum (2004): P is an optimal non-bipartite matching with $\Lambda(\mathbb{R})$ $\Delta(P)<+\infty$ if and only if P is also an optimal, feasible tripartite matching.

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

Bo and Rosenbaum (2004): P is an optimal non-bipartite matching with $\Lambda(\mathbb{R})$ $\Delta(P)<+\infty$ if and only if P is also an optimal, feasible tripartite matching.

• Given ^a single set $\Theta = \mathcal{A} \bigcup \mathcal{B} \bigcup \mathcal{C} = (\eta$ $\bm A$ $\hat{q}_1^1, ..., \hat{q}_l^1$ $\bm A$ $^A_{N/3}, \eta^B_1$ $\frac{1}{1}$, ..., η^B_N $\tilde N/3, \eta_{1}$ $\, C \,$ $\tilde{1}$, ... η $\, C \,$ $\begin{array}{c} C\ N/3 \end{array}$;

$$
\delta\{(\eta_i^m,\eta_j^n)\}=\left\{\begin{array}{ll}\sqrt{(\hat{\delta}_{1,i}^m-\hat{\delta}_{1,j}^n)^2+(\hat{\delta}_{2,i}^m-\hat{\delta}_{2,j}^n)^2+(\hat{\delta}_{3,i}^m-\hat{\delta}_{3,j}^n)^2}&\text{if $m\neq n$;}\\ +\infty&\text{if $m=n$}.\end{array}\right.
$$

• Find the optimal non-bipartite matching;

•

Ad Hoc Method (I). Incomplete Block Design with Disjoint Pairs

How to obtain incomplete block of disjoint pairs through optimal nonbipartite matching?

Ad Hoc Method (II). Symmetric Tripartite Matching With Triples

- \bullet $\Delta_{{\mathcal M}_{\mathcal A}}^{*} = \Delta_{{\mathcal M}_{\mathcal A},c}^{*} + \Delta_{{\mathcal M}_{\mathcal A},\mathcal B}^{*} +$ $\sum_{\omega \in \mathcal{M}_{B,c}^+} \delta(\omega)$ \mathcal{B}, \mathcal{C} δ $\delta($ $\omega)$
- \bullet $\Delta_{{\mathcal M}_\mathcal{B}}^* = \Delta_{{\mathcal M}_{\mathcal{A}},\mathcal{B}}^* + \Delta_{{\mathcal M}_{\mathcal{B}},\mathcal{C}}^* +$ $\sum_{\omega \in \mathcal{M}_{A,c}^+} \delta(\omega)$ $\mathcal{A}\, , \mathcal{C}$ δ $\delta($ $\omega)$
- \bullet $\Delta_{{\mathcal M}_\mathcal{C}}^* = \Delta_{{\mathcal M}_{\mathcal{B},\mathcal{C}}}^* + \Delta_{{\mathcal M}_{\mathcal{A},\mathcal{C}}}^* +$ \sum $\sum_{\omega \in \mathcal{M}_{AB}^+} \delta$ \mathcal{A}, \mathcal{B} δ $\delta($ $\omega)$
- optimal reference group: $\Delta^*_{{\mathcal M}_{\mathcal A,\mathcal B,\mathcal C}}$ $=$ $= \textsf{min}(\Delta_{\mathcal{M}_{\mathcal{A}}}^{*},\Delta_{\mathcal{M}_{\mathcal{B}}}^{*},\Delta_{\mathcal{M}_{\mathcal{C}}}^{*})$

Ad Hoc Method (II). Symmetric Tripartite Matching With Triples

- \bullet $\Delta_{\mathcal{M}_{\mathcal{A}}}^{*} = \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{C}}}^{*} + \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{B}}}^{*} +$ $\sum_{\omega \in \mathcal{M}_{B,c}^+} \delta(\omega)$ \mathcal{B}, \mathcal{C} δ $\delta($ $\omega)$
- \bullet Δ^* . $\Delta_{{\mathcal M}_{\mathcal B}}^* \;=\; \Delta_{{\mathcal M}_{\mathcal A},{\mathcal B}}^* \;+\; \Delta_{{\mathcal M}_{{\mathcal B},{\mathcal C}}}^* \;+\;$ $\sum_{\omega \in \mathcal{M}_{A,c}^+} \delta(\omega)$ $\mathcal{A}\, , \mathcal{C}$ δ $\delta($ $\omega)$
- \bullet Δ_{14}^* $\Delta_{{\mathcal M}_{{\mathcal C}}}^{*}\;=\;\Delta_{{\mathcal M}_{{\mathcal B},{\mathcal C}}}^{*}\;+\;\Delta_{{\mathcal M}_{{\mathcal A},{\mathcal C}}}^{*}\;\;+\;$ \sum $\sum_{\omega \in \mathcal{M}_{AB}^+} \delta$ \mathcal{A}, \mathcal{B} δ $\delta($ $\omega)$
- optimal reference group: $\Delta^*_{{\mathcal M}_{\mathcal A,\mathcal B,\mathcal C}}$ $=$ $= \textsf{min}(\Delta_{\mathcal{M}_{\mathcal{A}}}^{*},\Delta_{\mathcal{M}_{\mathcal{B}}}^{*},\Delta_{\mathcal{M}_{\mathcal{C}}}^{*})$

Ad Hoc Method (II). Symmetric Tripartite Matching With Triples

- \bullet $\Delta_{\mathcal{M}_{\mathcal{A}}}^{*} = \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{C}}}^{*} + \Delta_{\mathcal{M}_{\mathcal{A},\mathcal{B}}}^{*} +$ $\sum_{\omega \in \mathcal{M}_{B,c}^+} \delta(\omega)$ \mathcal{B}, \mathcal{C} δ $\delta($ $\omega)$
- \bullet $\Delta_{{\mathcal M}_{\mathcal B}}^* = \Delta_{{\mathcal M}_{\mathcal A},{\mathcal B}}^* + \Delta_{{\mathcal M}_{\mathcal B,{\mathcal C}}}^* +$ $\sum_{\omega \in \mathcal{M}_{A,c}^+} \delta(\omega)$ $\mathcal{A}\, , \mathcal{C}$ δ $\delta($ $\omega)$
- \bullet Δ_{Λ}^* $\Delta_{{\mathcal M}_\mathcal{C}}^* \;=\; \Delta_{{\mathcal M}_{\mathcal{B},\mathcal{C}}}^* \;+\; \Delta_{{\mathcal M}_{\mathcal{A},\mathcal{C}}}^* \;+\;$ \sum $\sum_{\omega \in \mathcal{M}_{AB}^+} \delta$ \mathcal{A}, \mathcal{B} δ $\delta($ $\omega)$
- optimal reference group: $\Delta^*_{{\mathcal M}_{\mathcal A,\mathcal B,\mathcal C}}$ $=$ $= \textsf{min}(\Delta_{\mathcal{M}_{\mathcal{A}}}^{*},\Delta_{\mathcal{M}_{\mathcal{B}}}^{*},\Delta_{\mathcal{M}_{\mathcal{C}}}^{*})$

Ad Hoc Method (III). Asymmetric Tripartite Matching With Triples

- With group B as predefined reference group:
- •∆∗ B $^*_{\mathcal{B}}=\Delta^*_{\mathcal{M}_{\mathcal{A},\mathcal{B}}} + \Delta^*_{\mathcal{M}_{\mathcal{B},\mathcal{C}}}$
- • \bullet $\sum_{\omega \in \mathcal{M}_{\mathcal{A}}^{+}}$ account; $\mathcal{A}\, , \mathcal{C}$ δ $\delta($ ω) is not taken into
Model: $Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T$ ${}^{T}\mathbf{X}_{i}+\varepsilon_{i}$

$$
\text{Model: } Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i
$$

• Pooled Samples:

$$
\widehat{\beta}_{1,pool} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}};
$$

$$
MSE(\widehat{\beta}_{1,pool}) = \frac{6}{N} \gamma^T \Sigma \gamma + \frac{6}{N} \sigma^2
$$

Model:
$$
Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i
$$

• Pooled Samples:

$$
\widehat{\beta}_{1,pool}=\overline{y}_{\mathcal{A}}-\overline{y}_{\mathcal{C}};
$$

$$
MSE(\widehat{\beta}_{1,pool}) = \frac{6}{N} \gamma^T \Sigma \gamma + \frac{6}{N} \sigma^2
$$

• Matched Samples (ICB Design):

$$
\hat{\beta}_1^{ICB} = \frac{2}{3}(\overline{y}_{A13} - \overline{y}_{C13}) + \frac{1}{3}[(\overline{y}_{A12} - \overline{y}_{B12}) + (\overline{y}_{B23} - \overline{y}_{C23})]
$$

 $MSE(\widehat{\beta}_1^{ICB}) =$ 1 $\overline{9}$ γ T Cov $^*[2(\overline{\mathbf X}_{A13}\!-\!\overline{\mathbf X}_{C13})\!+\!(\overline{\mathbf X}_{A12}\!-\!\overline{\mathbf X}_{B12})\!+\!(\overline{\mathbf X}_{B23}\!-\!\overline{\mathbf X}_{C23})]\gamma{+8}$ σ^2/N

Model:
$$
Y_i = \alpha + \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i
$$

• Pooled Samples:

$$
\widehat{\beta}_{1,pool} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}};
$$

$$
MSE(\widehat{\beta}_{1,pool}) = \frac{6}{N} \gamma^T \Sigma \gamma + \frac{6}{N} \sigma^2
$$

• Matched Samples (ICB Design):

$$
\hat{\beta}_1^{ICB} = \frac{2}{3}(\overline{y}_{A13} - \overline{y}_{C13}) + \frac{1}{3}[(\overline{y}_{A12} - \overline{y}_{B12}) + (\overline{y}_{B23} - \overline{y}_{C23})]
$$

$$
MSE(\widehat{\beta}_1^{ICB}) = \frac{1}{9}\gamma^T \text{Cov}^*[2(\overline{\mathbf{X}}_{A13} - \overline{\mathbf{X}}_{C13}) + (\overline{\mathbf{X}}_{A12} - \overline{\mathbf{X}}_{B12}) + (\overline{\mathbf{X}}_{B23} - \overline{\mathbf{X}}_{C23})]\gamma + 8\sigma^2/N
$$

• Matched Samples (ATM and STM Design):

$$
\widehat{\beta}_1^{ATM} = \widehat{\beta}_1^{STM} = \overline{y}_{\mathcal{A}} - \overline{y}_{\mathcal{C}}
$$

$$
MSE(\widehat{\beta}_1^{STM}) = \gamma^T \text{Cov}^{**} (\overline{\mathbf{X}}_{\mathcal{A}} - \overline{\mathbf{X}}_{\mathcal{C}}) \gamma + 6\sigma^2 / N.
$$

The design for three-arms trials with specified parameter M :

The design for three-arms trials with specified parameter M :

• Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A},\mathcal{B} and $\mathcal{C}.$ respectively;

The design for three-arms trials with specified parameter M :

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A},\mathcal{B} and $\mathcal{C}.$ respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N|\times |N|$ <mark>matrix</mark> of estimated Euclidean distances;

The design for three-arms trials with specified parameter M :

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A},\mathcal{B} and $\mathcal{C}.$ respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N|\times |N|$ <mark>matrix</mark> of estimated Euclidean distances;
- Step 3. Obtain the optimal matched samples based on ^a matching algorithm:
	- \circ incomplete block design with disjoint pairs;
	- \circ asymmetric tripartite matching design;
	- \circ symmetric tripartite matching design.

Record the minimum total distance Δ for the given randomization.

The design for three-arms trials with specified parameter M :

- Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment groups \mathcal{A},\mathcal{B} and $\mathcal{C}.$ respectively;
- Step 2. Compute the estimated probability of being assigned to each treatment group to create the $|N|\times |N|$ <mark>matrix</mark> of estimated Euclidean distances;
- Step 3. Obtain the optimal matched samples based on ^a matching algorithm:
	- \circ incomplete block design with disjoint pairs;
	- \circ asymmetric tripartite matching design;
	- \circ symmetric tripartite matching design.

Record the minimum total distance Δ for the given randomization.

• Step 4. Repeat Steps 1 to 3 for M times and choose the randomization with minimum total distance $\Lambda^* = \min(\Lambda, \Lambda_0, \Lambda_1)$ minimum total distance $\Delta^*=\min(\Delta_1,\Delta_2,...,$ $\Delta_M).$

Simulation Study

- generating response: $Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma^T \mathbf{X}_i + \varepsilon_i, \quad i = 1, 2, ...N$
- true treatment effect: $\beta_1 = \beta_2 = 0.5$
- $\bullet\;$ true confounding effects: $\gamma_j=\gamma,\;j=1,...,r,$ where $\gamma\;=0.5,1.0,1.5$
- covariate setting:

$$
\circ X_1, X_2, X_3, X_4 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5) \; ;
$$

$$
\circ X_1, X_2 \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5) \; ; X_3, X_4 \stackrel{i.i.d}{\sim} N(0, 0.25)
$$

• We consider sample sizes $N = 24$ or 36 ;

<u> The BMW Design with Three Arms: Simulation Results $N = 24$ </u>

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$
Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18
$$

where $X_i \stackrel{i.i.d}{\sim} \mathcal{N}(0,0.25)$ and ε_i $i.i.d$ ∼ $\mathcal{N}(0,1)$ and $N=3\times 6=18$

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$
Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18
$$

where $X_i \stackrel{i.i.d}{\sim} \mathcal{N}(0,0.25)$ and ε_i $i.i.d$ ∼ $\mathcal{N}(0,1)$ and $N=3\times 6=18$

• Algorithm: Dynamic programming algorithm;

How close the proposed symmetric tripartite matching is to the true optimal tripartite matching method?

• Model:

$$
Y_i = \beta_1 I(Z_i = 1) + \beta_2 I(Z_i = 2) + \gamma X_i + \varepsilon_i, \quad i = 1, 2, \dots 18
$$

where $X_i \stackrel{i.i.d}{\sim} \mathcal{N}(0,0.25)$ and ε_i $i.i.d$ ∼ $\mathcal{N}(0,1)$ and $N=3\times 6=18$

- Algorithm: Dynamic programming algorithm;
- Results: The symmetric tripartite matching algorithm is nearly optimal:

◦ MSE of treatment effect estimator;

 \circ Difference in minimum Euclidean Distances;

Discussion

- The 3-arms BMW design can be further extended to be used in 4-arms or larger trials, e.g. 2x2 factorial design;
	- $\circ~$ The symmetric quadripartite matching; $\sqrt{}$
	- \circ The asymmetric quadripartite matching; $\sqrt{}$
	- \circ Method of finding Optimal balanced incomplete block design through nonbipartite matching; \times
- Limitation: The BMW design may not perform well in the studies with very small sample size (e.g. $\mathsf{group}\ \mathsf{size} < 10$ and number of covariates ≥ 4);
	- The propensity score model may not work well due to the complete separation of cases and controls by covariates;
	- \circ One might drop less important covariates;
- • Cluster [Randomized](#page-1-0) **Trial**
- [Overview](#page-3-0)
- 2. [2-ARM](#page-4-0) BMW
- 3. [Extension](#page-55-0)
- 4. [Future](#page-88-0)
- 5. [References](#page-94-0)

Future Work in Personalized Medicine

N=200 Patients

- • Cluster [Randomized](#page-1-0) Trial
- [Overview](#page-3-0)
- 2. [2-ARM](#page-4-0) BMW
- 3. [Extension](#page-55-0)
- 4. [Future](#page-88-0)
- 5. [References](#page-94-0)
- [References](#page-95-0)

References

References

- Xu, Z. and Kalbfleisch, J.D (2010). Propensity Score Matching in Randomized Clinical Trials. Biometrics, 66, 813-823.
- Xu, Z. and Kalbfleisch, J.D (2012). Matching in Multi-arm Clinical Trials. *Biometrics*, Invited Revision.